Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks

Jiehui Deng, Sheng Wan, Xiang Wang, Enmei Tu, Xiaolin Huang, Jie Yang and Chen Gong*

Nanjing University of Science and Technology

Shanghai Jiao Tong University

Outline

- Introduction
- Motivation
- Proposed method
- Experimental results

Background

- Estimating the Ratio of Edge-Users (REU) in mobile networks.
- We Using a machine learning technique to adaptively estimate or predict the REU.

Motivation

• The mobile network naturally contains a graph structure.

• The graph edges and their features also play a critical role in determining the REU.

Graph Convolutional Network

convolution

Regular domain

Irregular domain

Existing methods

- ✓ Spectral-Based Graph Convolution
- ✓ Spatial-Based Graph Convolution
- ✓ Edge-based Graph Convolution

Proposed Method: EAGAT

Architecture

Proposed Method: EAGAT

Overall algorithm

Algorithm 1 Edge-Aware Graph Convolution Process of EA-	Algorithm 2 Proposed EAGAT for RELL Estimating	
GAT	Input : Input Graph with H and E: Neighborhood M.	
Input : Input node features H ; Input edge features E ; Neighborhood \mathcal{N} ;	number of iterations T; learning rate η ; number of	
1: // Calculate the attention coefficients	graph convolutional layers L ; number of attention heads	
2: for $i = 1, 2,, N$ do	K;	
3: for $j = 1, 2,, N$ do 4: Obtain α_{ij} according to Eq. (8); 5: Obtain \mathbf{A}_{ij} according to Eq. (9); 6: end for 7: end for 8: // Perform graph convolution 9: for $l = 1, 2,, L - 1$ do 10: Obtain $\mathbf{H}^{(l)}$ according to Eq. (11); 11: end for	 // Train the model for i = 1, 2,, T do Conduct EAGAT by Algorithm 1; Calculate the error term according to Eq. (13), and update the weight matrices W^k_(l)(1 ≤ l ≥ L, 1 ≤ k ≥ K) using full-batch gradient descent; end for 	
12: Calculate the network output according to Eq. (12);	6: Conduct prediction by Algorithm 1;	
Output : Network output $\hat{\mathbf{y}}$.	Output: REU prediction for each node in the graph.	

• Regression results

Model	$Mobile_Spring$	$Mobile_Summer$
MLP [48]	0.602 ± 0.007	0.614 ± 0.006
RF [49]	0.610 ± 0.008	0.618 ± 0.007
GraphSAGE [23]	0.702 ± 0.010	0.712 ± 0.011
GAT [15]	0.721 ± 0.007	0.734 ± 0.013
EGNN [29]	0.733 ± 0.008	0.745 ± 0.009
EAGAT	$\textbf{0.880} \pm \textbf{0.010}$	$\textbf{0.891} \pm \textbf{0.008}$

• The convergence curve

• Distribution

• Ablation Study

Thanks for your attention!

jhdeng@njust.edu.cn