Learning Connectivity with Graph Convolutional Networks

Hichem SAHBI

CNRS Sorbonne University, Paris

ICPR 2020

Hichem SAHBI Learning Connectivity with Graph Convolutional Networks

• = • • =

Outline

Introduction

- Learning connectivity in GCNs
- Experiments
- Conclusion

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Introduction

Learning connectivity in GCNs Experiments Conclusion

Outline

2 Learning connectivity in GCNs

3 Experiments

伺 ト イヨト イヨト

э

Motivation

- Graph convolutional networks (GCNs) aim at generalizing deep learning to arbitrary irregular domains.
- Existing spatial GCNs follow a neighborhood aggregation scheme, and its success is reliant on the topology (structure) of input graphs.
- However, graph structures (either available or handcrafted) are powerless to optimally capture all the relationships between nodes as their setting is oblivious to the targeted applications.
- E.g., node-to-node relationships, in human skeletons, capture the intrinsic anthropometric characteristics of individuals (useful for their identification) while other connections, yet to infer, are necessary for recognizing their dynamics and actions.

Motivation

- Graph convolutional networks (GCNs) aim at generalizing deep learning to arbitrary irregular domains.
- Existing spatial GCNs follow a neighborhood aggregation scheme, and its success is reliant on the topology (structure) of input graphs.
- However, graph structures (either available or handcrafted) are powerless to optimally capture all the relationships between nodes as their setting is oblivious to the targeted applications.
- E.g., node-to-node relationships, in human skeletons, capture the intrinsic anthropometric characteristics of individuals (useful for their identification) while other connections, yet to infer, are necessary for recognizing their dynamics and actions.

Motivation

- Graph convolutional networks (GCNs) aim at generalizing deep learning to arbitrary irregular domains.
- Existing spatial GCNs follow a neighborhood aggregation scheme, and its success is reliant on the topology (structure) of input graphs.
- However, graph structures (either available or handcrafted) are powerless to optimally capture all the relationships between nodes as their setting is oblivious to the targeted applications.
- E.g., node-to-node relationships, in human skeletons, capture the intrinsic anthropometric characteristics of individuals (useful for their identification) while other connections, yet to infer, are necessary for recognizing their dynamics and actions.

Motivation

- Graph convolutional networks (GCNs) aim at generalizing deep learning to arbitrary irregular domains.
- Existing spatial GCNs follow a neighborhood aggregation scheme, and its success is reliant on the topology (structure) of input graphs.
- However, graph structures (either available or handcrafted) are powerless to optimally capture all the relationships between nodes as their setting is oblivious to the targeted applications.
- E.g., node-to-node relationships, in human skeletons, capture the intrinsic anthropometric characteristics of individuals (useful for their identification) while other connections, yet to infer, are necessary for recognizing their dynamics and actions.

Contribution : learning connectivity in GCNs

- We introduce a novel framework that learns convolutional filters on graphs together with their topological properties.
- The latter are modeled through matrix operators that capture multiple aggregates on graphs, learned using a constrained cross-entropy loss.
- We consider different *constraints* (including stochasticity, orthogonality and symmetry) acting as regularizers.
- Stochasticity implements random walk Laplacians while orthogonality models multiple aggregation operators with non-overlapping supports; it also avoids redundancy and oversizing the learned GCNs with useless parameters.
 Symmetry reduces further the number of training parameters.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contribution : learning connectivity in GCNs

- We introduce a novel framework that learns convolutional filters on graphs together with their topological properties.
- The latter are modeled through matrix operators that capture multiple aggregates on graphs, learned using a constrained cross-entropy loss.
- We consider different *constraints* (including stochasticity, orthogonality and symmetry) acting as regularizers.
- Stochasticity implements random walk Laplacians while orthogonality models multiple aggregation operators with non-overlapping supports; it also avoids redundancy and oversizing the learned GCNs with useless parameters. Symmetry reduces further the number of training parameters.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Contribution : learning connectivity in GCNs

- We introduce a novel framework that learns convolutional filters on graphs together with their topological properties.
- The latter are modeled through matrix operators that capture multiple aggregates on graphs, learned using a constrained cross-entropy loss.
- We consider different *constraints* (including stochasticity, orthogonality and symmetry) acting as regularizers.

 Stochasticity implements random walk Laplacians while orthogonality models multiple aggregation operators with non-overlapping supports; it also avoids redundancy and oversizing the learned GCNs with useless parameters. Symmetry reduces further the number of training parameters.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Contribution : learning connectivity in GCNs

- We introduce a novel framework that learns convolutional filters on graphs together with their topological properties.
- The latter are modeled through matrix operators that capture multiple aggregates on graphs, learned using a constrained cross-entropy loss.
- We consider different *constraints* (including stochasticity, orthogonality and symmetry) acting as regularizers.
- Stochasticity implements random walk Laplacians while orthogonality models multiple aggregation operators with non-overlapping supports; it also avoids redundancy and oversizing the learned GCNs with useless parameters. Symmetry reduces further the number of training parameters.

ヘロト 人間ト ヘヨト ヘヨト

Outline

2 Learning connectivity in GCNs

3 Experiments

A 10

.

Problem statement

$$(\mathcal{G} \star \mathcal{F})_{\mathcal{V}} = f(\mathbf{A} \mathbf{U}^{\top} \mathbf{W}).$$

- Here AU^T acts as a feature extractor which collects non-differential and differential statistics including means and variances of node neighbors, before applying convolutions.
- We use the chain rule in order to derive the gradient ^{∂E}/_{∂vec(A)}
 and update A using SGD; we upgrade the latter to learn both
 the convolutional parameters W together with A while
 implementing orthogonality, stochasticity and symmetry.
- Orthogonality allows us to design A with a minimum number of parameters, stochasticity normalizes nodes by their degrees and allows learning random walk Laplacians, while symmetry reduces further the number of training parameters.

Problem statement

$$(\mathcal{G} \star \mathcal{F})_{\mathcal{V}} = f(\mathbf{A} \mathbf{U}^{\top} \mathbf{W}).$$

- Here AU[⊤] acts as a feature extractor which collects non-differential and differential statistics including means and variances of node neighbors, before applying convolutions.
- We use the chain rule in order to derive the gradient ^{∂E}/_{∂vec(A)}
 and update A using SGD; we upgrade the latter to learn both
 the convolutional parameters W together with A while
 implementing orthogonality, stochasticity and symmetry.
- Orthogonality allows us to design A with a minimum number of parameters, stochasticity normalizes nodes by their degrees and allows learning random walk Laplacians, while symmetry reduces further the number of training parameters.

Problem statement

$$(\mathcal{G} \star \mathcal{F})_{\mathcal{V}} = f(\mathbf{A} \mathbf{U}^{\top} \mathbf{W}).$$

- Here AU[⊤] acts as a feature extractor which collects non-differential and differential statistics including means and variances of node neighbors, before applying convolutions.
- We use the chain rule in order to derive the gradient ^{∂E}/_{∂vec(A)}
 and update A using SGD; we upgrade the latter to learn both
 the convolutional parameters W together with A while
 implementing orthogonality, stochasticity and symmetry.
- Orthogonality allows us to design A with a minimum number of parameters, stochasticity normalizes nodes by their degrees and allows learning random walk Laplacians, while symmetry reduces further the number of training parameters.

Problem statement

$$(\mathcal{G} \star \mathcal{F})_{\mathcal{V}} = f(\mathbf{A} \mathbf{U}^{\top} \mathbf{W}).$$

- Here AU[⊤] acts as a feature extractor which collects non-differential and differential statistics including means and variances of node neighbors, before applying convolutions.
- We use the chain rule in order to derive the gradient DE **DE** DE
- Orthogonality allows us to design **A** with a minimum number of parameters, stochasticity normalizes nodes by their degrees and allows learning random walk Laplacians, while symmetry reduces further the number of training parameters.

Stochasticity

- Stochasticity requires adding equality and inequality constraints in SGD, i.e., $\mathbf{A}_{ij} \in [0, 1]$ and $\sum_{q} \mathbf{A}_{qj} = 1$.
- We consider a reparametrization of the learned matrices, as $A_{ij} = h(\hat{A}_{ij}) / \sum_{q} h(\hat{A}_{qj}).$
- During backpropagation, the gradient of the loss E (now w.r.t \hat{A}) is updated using the chain rule as

$$\frac{\partial E}{\partial \hat{\mathbf{A}}_{ij}} = \sum_{p} \frac{\partial E}{\partial \mathbf{A}_{pj}} \frac{\partial \mathbf{A}_{pj}}{\partial \hat{\mathbf{A}}_{ij}} \quad \text{with} \quad \frac{\partial \mathbf{A}_{pj}}{\partial \hat{\mathbf{A}}_{ij}} = \frac{h'(\hat{\mathbf{A}}_{ij})}{\sum_{q} h(\hat{\mathbf{A}}_{qj})} .(\delta_{pi} - \mathbf{A}_{pj}).$$

• In practice $h(.) = \exp(.)$ and the new gradient (w.r.t $\hat{\mathbf{A}}$) is obtained by multiplying the original one by the Jacobian $\mathbf{J}_{\text{stc}} = \left[\frac{\partial \mathbf{A}_{pj}}{\partial \hat{\mathbf{A}}_{ij}}\right]_{p,i=1}^{n}$ which merely reduces to $[\mathbf{A}_{ij}.(\delta_{pi} - \mathbf{A}_{pj})]_{p,i}$.

Stochasticity

- Stochasticity requires adding equality and inequality constraints in SGD, i.e., $\mathbf{A}_{ij} \in [0, 1]$ and $\sum_{a} \mathbf{A}_{aj} = 1$.
- We consider a reparametrization of the learned matrices, as $\mathbf{A}_{ij} = h(\hat{\mathbf{A}}_{ij}) / \sum_{q} h(\hat{\mathbf{A}}_{qj}).$
- During backpropagation, the gradient of the loss E (now w.r.t $\hat{\mathbf{A}})$ is updated using the chain rule as

$$\frac{\partial E}{\partial \hat{\mathbf{A}}_{ij}} = \sum_{p} \frac{\partial E}{\partial \mathbf{A}_{pj}} \frac{\partial \mathbf{A}_{pj}}{\partial \hat{\mathbf{A}}_{ij}} \quad \text{with} \quad \frac{\partial \mathbf{A}_{pj}}{\partial \hat{\mathbf{A}}_{ij}} = \frac{h'(\hat{\mathbf{A}}_{ij})}{\sum_{q} h(\hat{\mathbf{A}}_{qj})} .(\delta_{pi} - \mathbf{A}_{pj}).$$

• In practice $h(.) = \exp(.)$ and the new gradient (w.r.t \hat{A}) is obtained by multiplying the original one by the Jacobian $J_{\text{stc}} = \left[\frac{\partial A_{pj}}{\partial \hat{A}_{ij}}\right]_{p,i=1}^{n}$ which merely reduces to $[A_{ij}.(\delta_{pi} - A_{pj})]_{p,i}$.

Stochasticity

- Stochasticity requires adding equality and inequality constraints in SGD, i.e., $\mathbf{A}_{ij} \in [0, 1]$ and $\sum_{a} \mathbf{A}_{aj} = 1$.
- We consider a reparametrization of the learned matrices, as $\mathbf{A}_{ij} = h(\hat{\mathbf{A}}_{ij}) / \sum_{q} h(\hat{\mathbf{A}}_{qj}).$
- During backpropagation, the gradient of the loss E (now w.r.t $\hat{\mathbf{A}})$ is updated using the chain rule as

$$\frac{\partial E}{\partial \hat{\mathbf{A}}_{ij}} = \sum_{p} \frac{\partial E}{\partial \mathbf{A}_{pj}} \frac{\partial \mathbf{A}_{pj}}{\partial \hat{\mathbf{A}}_{ij}} \quad \text{with} \quad \frac{\partial \mathbf{A}_{pj}}{\partial \hat{\mathbf{A}}_{ij}} = \frac{h'(\hat{\mathbf{A}}_{ij})}{\sum_{q} h(\hat{\mathbf{A}}_{qj})} \cdot (\delta_{pi} - \mathbf{A}_{pj}).$$

• In practice $h(.) = \exp(.)$ and the new gradient (w.r.t \hat{A}) is obtained by multiplying the original one by the Jacobian $J_{stc} = \left[\frac{\partial A_{pj}}{\partial \hat{A}_{ij}}\right]_{p,i=1}^{n}$ which merely reduces to $[A_{ij}.(\delta_{pi} - A_{pj})]_{p,i}$.

Stochasticity

- Stochasticity requires adding equality and inequality constraints in SGD, i.e., $\mathbf{A}_{ij} \in [0, 1]$ and $\sum_{a} \mathbf{A}_{aj} = 1$.
- We consider a reparametrization of the learned matrices, as $\mathbf{A}_{ij} = h(\hat{\mathbf{A}}_{ij}) / \sum_{q} h(\hat{\mathbf{A}}_{qj}).$
- During backpropagation, the gradient of the loss E (now w.r.t $\hat{\mathbf{A}})$ is updated using the chain rule as

$$\frac{\partial E}{\partial \hat{\mathbf{A}}_{ij}} = \sum_{p} \frac{\partial E}{\partial \mathbf{A}_{pj}} \frac{\partial \mathbf{A}_{pj}}{\partial \hat{\mathbf{A}}_{ij}} \quad \text{with} \quad \frac{\partial \mathbf{A}_{pj}}{\partial \hat{\mathbf{A}}_{ij}} = \frac{h'(\hat{\mathbf{A}}_{ij})}{\sum_{q} h(\hat{\mathbf{A}}_{qj})} .(\delta_{pi} - \mathbf{A}_{pj}).$$

• In practice $h(.) = \exp(.)$ and the new gradient (w.r.t \hat{A}) is obtained by multiplying the original one by the Jacobian $J_{\text{stc}} = \left[\frac{\partial A_{pj}}{\partial \hat{A}_{ij}}\right]_{p,i=1}^{n}$ which merely reduces to $[A_{ij}.(\delta_{pi} - A_{pj})]_{p,i}$.

Orthogonality

$$(\mathcal{G} \star \mathcal{F})_{\mathcal{V}} = f\left(\sum_{k=1}^{K} \mathbf{A}_k \mathbf{U}^{\top} \mathbf{W}_k\right)$$

$$\begin{array}{ll} \min_{\{\mathbf{A}_k\}_k, \mathbf{W}} & E(\mathbf{A}_1, \dots, \mathbf{A}_K; \mathbf{W}) \\ \text{s.t.} & \mathbf{A}_k \odot \mathbf{A}_k > \mathbf{0}_n, \ \mathbf{A}_k \odot \mathbf{A}_{k'} = \mathbf{0}_n \quad \forall k, k' \neq k. \end{array}$$

- We consider exp(γÂ_k) ⊘ (∑^K_{r=1} exp(γÂ_r)) as a softmax reparametrization of A_k, with {Â_k}_k free parameters in ℝ^{n×n}.
- By choosing a large value of γ, it becomes possible to implement *ϵ*-orthogonality; a surrogate property where only one entry A_{kij} ≫ 0 while all others {A_{k'ij}}_{k'≠k} vanish.
- \bullet The setting of γ and updated Jacobians are in the paper.

Orthogonality

$$(\mathcal{G} \star \mathcal{F})_{\mathcal{V}} = f\left(\sum_{k=1}^{K} \mathbf{A}_k \mathbf{U}^{\top} \mathbf{W}_k\right)$$

$$\begin{array}{ll} \min_{\{\mathbf{A}_k\}_k, \mathbf{W}} & E(\mathbf{A}_1, \dots, \mathbf{A}_K; \mathbf{W}) \\ \text{s.t.} & \mathbf{A}_k \odot \mathbf{A}_k > \mathbf{0}_n, \ \mathbf{A}_k \odot \mathbf{A}_{k'} = \mathbf{0}_n \quad \forall k, k' \neq k. \end{array}$$

- We consider $\exp(\gamma \hat{\mathbf{A}}_k) \oslash (\sum_{r=1}^{K} \exp(\gamma \hat{\mathbf{A}}_r))$ as a softmax reparametrization of \mathbf{A}_k , with $\{\hat{\mathbf{A}}_k\}_k$ free parameters in $\mathbb{R}^{n \times n}$.
- By choosing a large value of γ, it becomes possible to implement ε-orthogonality; a surrogate property where only one entry A_{kij} ≫ 0 while all others {A_{k'ij}}_{k'≠k} vanish.
- \bullet The setting of γ and updated Jacobians are in the paper.

Orthogonality

$$(\mathcal{G} \star \mathcal{F})_{\mathcal{V}} = f\left(\sum_{k=1}^{K} \mathbf{A}_k \mathbf{U}^{\top} \mathbf{W}_k\right)$$

$$\begin{array}{ll} \min_{\{\mathbf{A}_k\}_k, \mathbf{W}} & E(\mathbf{A}_1, \dots, \mathbf{A}_K; \mathbf{W}) \\ \text{s.t.} & \mathbf{A}_k \odot \mathbf{A}_k > \mathbf{0}_n, \ \mathbf{A}_k \odot \mathbf{A}_{k'} = \mathbf{0}_n \quad \forall k, k' \neq k. \end{array}$$

- We consider $\exp(\gamma \hat{\mathbf{A}}_k) \oslash (\sum_{r=1}^{K} \exp(\gamma \hat{\mathbf{A}}_r))$ as a softmax reparametrization of \mathbf{A}_k , with $\{\hat{\mathbf{A}}_k\}_k$ free parameters in $\mathbb{R}^{n \times n}$.
- By choosing a large value of γ, it becomes possible to implement ε-orthogonality; a surrogate property where only one entry A_{kij} ≫ 0 while all others {A_{k'ij}}_{k'≠k} vanish.
- The setting of γ and updated Jacobians are in the paper.

Orthogonality

$$(\mathcal{G} \star \mathcal{F})_{\mathcal{V}} = f\left(\sum_{k=1}^{K} \mathbf{A}_k \mathbf{U}^{\top} \mathbf{W}_k\right)$$

$$\begin{array}{ll} \min_{\{\mathbf{A}_k\}_k, \mathbf{W}} & E(\mathbf{A}_1, \dots, \mathbf{A}_K; \mathbf{W}) \\ \text{s.t.} & \mathbf{A}_k \odot \mathbf{A}_k > \mathbf{0}_n, \ \mathbf{A}_k \odot \mathbf{A}_{k'} = \mathbf{0}_n \quad \forall k, k' \neq k. \end{array}$$

- We consider $\exp(\gamma \hat{\mathbf{A}}_k) \oslash (\sum_{r=1}^{K} \exp(\gamma \hat{\mathbf{A}}_r))$ as a softmax reparametrization of \mathbf{A}_k , with $\{\hat{\mathbf{A}}_k\}_k$ free parameters in $\mathbb{R}^{n \times n}$.
- By choosing a large value of γ, it becomes possible to implement ε-orthogonality; a surrogate property where only one entry A_{kij} ≫ 0 while all others {A_{k'ij}}_{k'≠k} vanish.
- $\bullet\,$ The setting of γ and updated Jacobians are in the paper.

Symmetry and combination

- Symmetry is guaranteed by considering the reparametrization of each matrix as $\mathbf{A}_k = \frac{1}{2}(\hat{\mathbf{A}}_k + \hat{\mathbf{A}}_k^{\top})$ with $\hat{\mathbf{A}}_k$ being free.
- Symmetry is maintained by multiplying the original gradient $\frac{\partial E}{\partial \text{vec}(\{\mathbf{A}_k\}_k)}$ by the Jacobian

$$\mathbf{J}_{\text{sym}} = \frac{1}{2} \left[\mathbf{1}_{\{k=k'\}} \cdot \mathbf{1}_{\{(i=i',j=j') \lor (i=j',j=i')\}} \right]_{ijk,i'j'k'}.$$

• One may combine symmetry with all the aforementioned constraints by multiplying the underlying Jacobians, so the final gradient is obtained by multiplying the original one as

$$\frac{\partial E}{\partial \mathsf{vec}(\{\hat{\mathbf{A}}_k\}_k)} = \mathbf{J}_{(\text{sym or stc})} \cdot \mathbf{J}_{\text{orth}} \cdot \frac{\partial E}{\partial \mathsf{vec}(\{\mathbf{A}_k\}_k)}.$$

Symmetry and combination

- Symmetry is guaranteed by considering the reparametrization of each matrix as $\mathbf{A}_k = \frac{1}{2}(\hat{\mathbf{A}}_k + \hat{\mathbf{A}}_k^{\top})$ with $\hat{\mathbf{A}}_k$ being free.
- Symmetry is maintained by multiplying the original gradient $\frac{\partial E}{\partial \text{vec}(\{A_k\}_k)}$ by the Jacobian

$$\mathbf{J}_{\text{sym}} = \frac{1}{2} \left[\mathbf{1}_{\{k=k'\}} \cdot \mathbf{1}_{\{(i=i',j=j') \lor (i=j',j=i')\}} \right]_{ijk,i'j'k'}.$$

• One may combine symmetry with all the aforementioned constraints by multiplying the underlying Jacobians, so the final gradient is obtained by multiplying the original one as

$$\frac{\partial E}{\partial \mathsf{vec}(\{\hat{\mathbf{A}}_k\}_k)} = \mathbf{J}_{(\text{sym or stc})}.\mathbf{J}_{\text{orth}}.\frac{\partial E}{\partial \mathsf{vec}(\{\mathbf{A}_k\}_k)}.$$

Symmetry and combination

- Symmetry is guaranteed by considering the reparametrization of each matrix as A_k = ¹/₂(Â_k + Â^T_k) with Â_k being free.
- Symmetry is maintained by multiplying the original gradient $\frac{\partial E}{\partial \text{vec}(\{A_k\}_k)}$ by the Jacobian

$$\mathbf{J}_{\text{sym}} = \frac{1}{2} \left[\mathbf{1}_{\{k=k'\}} \cdot \mathbf{1}_{\{(i=i',j=j') \lor (i=j',j=i')\}} \right]_{ijk,i'j'k'}.$$

• One may combine symmetry with all the aforementioned constraints by multiplying the underlying Jacobians, so the final gradient is obtained by multiplying the original one as

$$\frac{\partial E}{\partial \mathsf{vec}(\{\hat{\mathsf{A}}_k\}_k)} = \mathsf{J}_{(\text{sym or stc})}.\mathsf{J}_{\text{orth}}.\frac{\partial E}{\partial \mathsf{vec}(\{\mathsf{A}_k\}_k)}.$$

- 4 同 ト 4 ヨ ト - 4 ヨ ト

Outline

- 2 Learning connectivity in GCNs
- 3 Experiments
- 4 Conclusion

A 10

- - E + - E +

э

Database and settings

- We evaluate our GCN on the task of action recognition, using the SBU Kinect dataset.
- This is an interaction dataset acquired using the Microsoft Kinect sensor; it includes in total 282 video sequences belonging to C = 8 categories with variable duration, viewpoint changes and interacting individuals.
- In all these experiments, we use the same evaluation protocol as the one suggested in (SBU12) (i.e., train-test split) and we report the average accuracy over all the classes of actions.
- We trained our GCNs for 3000 epochs, with a batch size of 200, a momentum of 0.9 and a learning rate ν that decreases as ν ← ν × 0.99 (resp. increases as ν ← ν/0.99).

- ロ ト - (同 ト - (回 ト -) 回 ト -) 回

Input skeleton graphs

< 一型

ъ.

Performances

Const Oper		Joye Hore	Stry.	9-ts	у Уз	Sun Xorth	Orth Store	West,
	K = 1	89.2308	92.3077	-	89.2308	-	-	90.2564
HPM.	K = 4	87.6923	89.2308	89.2308	87.6923	90.7692	92.3077	89.4872
	<i>K</i> = 8	90.7692	95.3846	92.3077	90.7692	92.3077	92.3077	92.3077
	Mean	89.2308	92.3077	90.7692	89.2308	91.5384	92.3077	90.7692
	K = 1	92.3077	87.6923	-	95.3846	-	-	91.7949
LPM.	K = 4	92.3077	92.3077	93.8462	95.3846	90.7692	96.9231	93.5897
	<i>K</i> = 8	95.3846	90.7692	87.6923	93.8462	93.8462	92.3077	92.3077
	Mean	93.3333	90.2564	90.7692	94.8718	92.3077	94.6154	92.7180
	K = 1	95.3846	93.8462	-	95.3846	-	-	94.8718
Our	K = 4	93.8462	95.3846	95.3846	96.9231	93.8462	98.4615	95.6410
	K = 8	92.3077	93.8462	95.3846	90.7692	95.3846	90.7692	93.0769
	Mean	93.8462	94.3590	95.3846	94.3590	94.6154	94.6154	94.4615

HPM : handcrafted power map connectivity, LPM : learned power map connectivity, sym : symmetry, orth : orthogonality, stc : stochasticity.

Learned connectivity (examples)

白とくヨとく

э

Comparison

Methods	Perfs
GCNConv [57]	90.00
ArmaConv [61]	96.00
SGCConv [59]	94.00
ChebyNet [58]	96.00
Raw coordinates [53]	49.7
Joint features [53]	80.3
Interact Pose [62]	86.9
CHARM [63]	83.9
HBRNN-L [64]	80.35
Co-occurrence LSTM [66]	90.41
ST-LSTM [67]	93.3
Topological pose ordering[70]	90.5
STA-LSTM [56]	91.51
GCA-LSTM [55]	94.9
VA-LSTM [68]	97.2
DeepGRU [54]	95.7
Riemannian manifold trajectory[69]	93.7
Our best GCN model	98.46

Hichem SAHBI Learning Connectivity with Graph Convolutional Networks

▲御▶ ▲臣▶ ▲臣

æ

Outline

2 Learning connectivity in GCNs

3 Experiments

A 10

- - E + - E +

э

Conclusion

- We introduce in this paper a novel method which learns connectivity that "optimally" defines the support of aggregations and convolutions in GCNs.
- We investigate different settings which allow extracting non-differential and differential features as well as their combination before applying convolutions.
- We also consider different constraints (including orthogonality and stochasticity) which act as regularizers on the learned matrix operators.
- Experiments conducted on the challenging task of skeleton-based action recognition show the clear gain of the proposed method w.r.t different baselines as well as the related work.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >