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Motivation

Graph convolutional networks (GCNs) aim at generalizing deep
learning to arbitrary irregular domains.

Existing spatial GCNs follow a neighborhood aggregation
scheme, and its success is reliant on the topology (structure)
of input graphs.

However, graph structures (either available or handcrafted) are
powerless to optimally capture all the relationships between
nodes as their setting is oblivious to the targeted applications.

E.g., node-to-node relationships, in human skeletons, capture
the intrinsic anthropometric characteristics of individuals
(useful for their identification) while other connections, yet to
infer, are necessary for recognizing their dynamics and actions.
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Contribution : learning connectivity in GCNs

We introduce a novel framework that learns convolutional
filters on graphs together with their topological properties.
The latter are modeled through matrix operators that capture
multiple aggregates on graphs, learned using a constrained
cross-entropy loss.
We consider different constraints (including stochasticity,
orthogonality and symmetry) acting as regularizers.
Stochasticity implements random walk Laplacians while
orthogonality models multiple aggregation operators with
non-overlapping supports ; it also avoids redundancy and
oversizing the learned GCNs with useless parameters.
Symmetry reduces further the number of training parameters.
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Problem statement

Considering G = (V, E) endowed with {s(u)}u and (ii) A,

(G ? F)V = f
(
A U> W

)
.

Here AU> acts as a feature extractor which collects
non-differential and differential statistics including means and
variances of node neighbors, before applying convolutions.
We use the chain rule in order to derive the gradient ∂E

∂vec(A)

and update A using SGD ; we upgrade the latter to learn both
the convolutional parameters W together with A while
implementing orthogonality, stochasticity and symmetry.
Orthogonality allows us to design A with a minimum number
of parameters, stochasticity normalizes nodes by their degrees
and allows learning random walk Laplacians, while symmetry
reduces further the number of training parameters.
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Stochasticity

Stochasticity requires adding equality and inequality
constraints in SGD, i.e., Aij ∈ [0, 1] and

∑
q Aqj = 1.

We consider a reparametrization of the learned matrices, as
Aij = h(Âij)/

∑
q h(Âqj).

During backpropagation, the gradient of the loss E (now w.r.t
Â) is updated using the chain rule as

∂E

∂Âij

=
∑
p

∂E

∂Apj
.
∂Apj

∂Âij

with
∂Apj

∂Âij

=
h′(Âij)∑
q h(Âqj)

.(δpi − Apj).

In practice h(.) = exp(.) and the new gradient (w.r.t Â) is
obtained by multiplying the original one by the Jacobian
Jstc =

[∂Apj

∂Âij

]n
p,i=1 which merely reduces to [Aij .(δpi − Apj)]p,i .
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∑
q h(Âqj).
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∂Âij

]n
p,i=1 which merely reduces to [Aij .(δpi − Apj)]p,i .

Hichem SAHBI Learning Connectivity with Graph Convolutional Networks



Introduction
Learning connectivity in GCNs

Experiments
Conclusion

Stochasticity

Stochasticity requires adding equality and inequality
constraints in SGD, i.e., Aij ∈ [0, 1] and

∑
q Aqj = 1.

We consider a reparametrization of the learned matrices, as
Aij = h(Âij)/
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q h(Âqj)

.(δpi − Apj).

In practice h(.) = exp(.) and the new gradient (w.r.t Â) is
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Orthogonality

Learning multiple {Ak}k allows us to capture different graph
topologies when achieving aggregation and convolution.

(G ? F)V = f

( K∑
k=1

AkU>Wk

)
min{Ak}k ,W E

(
A1, . . . ,AK ;W

)
s.t. Ak � Ak > 0n, Ak � Ak′ = 0n ∀k, k ′ 6= k.

We consider exp(γÂk)� (
∑K

r=1 exp(γÂr )) as a softmax
reparametrization of Ak , with {Âk}k free parameters in Rn×n.
By choosing a large value of γ, it becomes possible to
implement ε-orthogonality ; a surrogate property where only
one entry Akij � 0 while all others {Ak ′ij}k ′ 6=k vanish.
The setting of γ and updated Jacobians are in the paper.
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Symmetry and combination

Symmetry is guaranteed by considering the reparametrization
of each matrix as Ak = 1

2(Âk + Â>k ) with Âk being free.
Symmetry is maintained by multiplying the original gradient

∂E
∂vec({Ak}k ) by the Jacobian

Jsym =
1
2
[
1{k=k ′}.1{(i=i ′,j=j ′)∨(i=j ′,j=i ′)}

]
ijk,i ′j ′k ′ .

One may combine symmetry with all the aforementioned
constraints by multiplying the underlying Jacobians, so the
final gradient is obtained by multiplying the original one as

∂E

∂vec({Âk}k)
= J(sym or stc).Jorth.

∂E

∂vec({Ak}k)
.
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Symmetry is maintained by multiplying the original gradient

∂E
∂vec({Ak}k ) by the Jacobian

Jsym =
1
2
[
1{k=k ′}.1{(i=i ′,j=j ′)∨(i=j ′,j=i ′)}

]
ijk,i ′j ′k ′ .

One may combine symmetry with all the aforementioned
constraints by multiplying the underlying Jacobians, so the
final gradient is obtained by multiplying the original one as

∂E

∂vec({Âk}k)
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Database and settings

We evaluate our GCN on the task of action recognition, using
the SBU Kinect dataset.
This is an interaction dataset acquired using the Microsoft
Kinect sensor ; it includes in total 282 video sequences
belonging to C = 8 categories with variable duration,
viewpoint changes and interacting individuals.
In all these experiments, we use the same evaluation protocol
as the one suggested in (SBU12) (i.e., train-test split) and we
report the average accuracy over all the classes of actions.
We trained our GCNs for 3000 epochs, with a batch size of
200, a momentum of 0.9 and a learning rate ν that decreases
as ν ← ν × 0.99 (resp. increases as ν ← ν/0.99).
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Input skeleton graphs

(raw coordinates)

Temporal Chunking s(v)

Motion trajectory (v)
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Performances

PPPPPPPPPOper
Const

no
ne

sy
m

or
th

stc sy
m
+
or
th

or
th
+
stc

M
ea
n

HPM.
K = 1 89.2308 92.3077 – 89.2308 – – 90.2564
K = 4 87.6923 89.2308 89.2308 87.6923 90.7692 92.3077 89.4872
K = 8 90.7692 95.3846 92.3077 90.7692 92.3077 92.3077 92.3077
Mean 89.2308 92.3077 90.7692 89.2308 91.5384 92.3077 90.7692

LPM.
K = 1 92.3077 87.6923 – 95.3846 – – 91.7949
K = 4 92.3077 92.3077 93.8462 95.3846 90.7692 96.9231 93.5897
K = 8 95.3846 90.7692 87.6923 93.8462 93.8462 92.3077 92.3077
Mean 93.3333 90.2564 90.7692 94.8718 92.3077 94.6154 92.7180

Our
K = 1 95.3846 93.8462 – 95.3846 – – 94.8718
K = 4 93.8462 95.3846 95.3846 96.9231 93.8462 98.4615 95.6410
K = 8 92.3077 93.8462 95.3846 90.7692 95.3846 90.7692 93.0769
Mean 93.8462 94.3590 95.3846 94.3590 94.6154 94.6154 94.4615

HPM : handcrafted power map connectivity, LPM : learned power
map connectivity, sym : symmetry, orth : orthogonality, stc :
stochasticity.
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Learned connectivity (examples)
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Comparison

Perfs
90.00
96.00
94.00
96.00
49.7
80.3
86.9
83.9
80.35
90.41
93.3
90.5
91.51
94.9
97.2
95.7
93.7
98.46

Methods
GCNConv [57]
ArmaConv [61]
SGCConv [59]
ChebyNet [58]
Raw coordinates [53]
Joint features [53]
Interact Pose [62]
CHARM [63]
HBRNN-L [64]
Co-occurrence LSTM [66]
ST-LSTM [67]
Topological pose ordering[70]
STA-LSTM [56]
GCA-LSTM [55]
VA-LSTM [68]
DeepGRU [54]
Riemannian manifold trajectory[69]
Our best GCN model
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Conclusion

We introduce in this paper a novel method which learns
connectivity that "optimally" defines the support of
aggregations and convolutions in GCNs.
We investigate different settings which allow extracting
non-differential and differential features as well as their
combination before applying convolutions.
We also consider different constraints (including orthogonality
and stochasticity) which act as regularizers on the learned
matrix operators.
Experiments conducted on the challenging task of
skeleton-based action recognition show the clear gain of the
proposed method w.r.t different baselines as well as the related
work.
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