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Dynamic Facial Attractiveness Prediction

Problem Definition

Why 
meaningful?

• Psychological and neuroscience: temporal 
cues play an important role in the 
perception of human faces.

• Industry demand: increasing popularity of 
short video apps (tens of thousands of facial 
performance videos are uploaded per day in 
Tik Tok).

Highlight of 
our work

• Propose the dynamic facial attractiveness 
prediction problem in short videos; 

• VFAP Dataset is introduced to facilitate 
related studies;

• 2S-TCN model is introduced to explore facial 
appearance and landmark features 
simultaneously;

• Extensive experiments on VFAP to explore 
DFAP problem.



Building Dataset

Source TikTok

Criterions 5 criterions for filtering short videos (detailed in our article)
GOAL: minimize the influence of other factors on facial attractiveness 
assessment 

Attractiveness 
Score

𝑠𝑐𝑜𝑟𝑒 = l𝑛(
𝑛𝑙𝑖𝑘𝑒𝑠+𝑛𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠+𝑛𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠
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VFAP Dataset 

S0 S1 S2 S3 Total

Video number 192 707 365 175 1,430

Avg. length 

(second) 
10.79 10.99 11.99 11.35 11.26

Total length 

(minute) 
34.54 129.47 71.13 33.12 268.26

Avg. frames 323.10 320.85 302.62 302.24 314.34

Total frames 62,036 22,6841 107,734 52,892 449,503

• The VFAP dataset contains 1,430 short videos
• Avg. length for each video is around 11 seconds, and the total length is 268 minutes.
• The dataset is divided into four subsets according to the different TikTok channels. 

The introduction video of VFAP dataset is strongly recommended for overall understanding of 
the dataset and the task.

BASIC STATISTICS OF VFAP DATASET



VFAP Dataset 
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Framework
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Overview of our proposed framework



Spatial Feature Extraction Module
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• Goal: generating uniformed representation for 
each video spatially

• 2 modalities are extracted: 
(a) facial appearance
(b) landmark positions

• State-of-the-art deep models  are used for better 
feature extraction



Two-Stream Temporal Convolutional Network -
Attentive feature enhancement
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There is a one-to-one 
correspondence 
relationship between two 
extracted features at any 
time point 𝑡.
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Two-Stream Temporal Convolutional Network -
Modality fusion & Temporal score fusion 
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Performance Comparison

Evaluation Metrics
Spearman’s rank correlation (SRC) coefficient
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Loss function:
the weighted summation of mean squared error 
(MSE) 𝐿𝑚 and margin ranking loss 𝐿𝑟.
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𝐿 = 𝐿𝑚 + 𝛼𝐿𝑟

• Static methods do not predict well on the 
dynamic facial data

• -> the importance of temporal modeling
for dynamic facial data



Ablation study

The proposed 2S-TCN structure 
which adopts attentive feature 
enhancement, decision-level 
fusion and max pooling achieves 
the best outcome.



Qualitative analysis
- Attentions generated from attentive feature enhancement module
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Attention reducing factors:
• not frontal face (a,c)
• too exaggerated or even 

distorted facial 
expressions (g)

Attention increasing factors:
• Positive facial 

expressions (e,f)
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Qualitative analysis
- Matching and mismatching examples

• two different kinds of dynamic facial attractiveness, i.e. beauty in facial appearance (example 
(1; c)) and interestingness in facial expressions (example (1; d)).

• the low-ranking faces lack attractiveness in both facial appearance and expressions.

Problems and future improvements:
• the deviations in attractiveness scores            
• bias in the gender distribution

a better formulation of the attractiveness score

intentionally introducing more representative male videos into dataset



Thanks for watching!

Contacts: Nina Weng {wengnn@buaa.edu.cn}
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