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Intro Related Disentangled Conclusion

J/\ Limitations of generative models

VAE and GAN have been developed for a few years, but we still do not
know much about them

The latent space of GAN and VAE are usually uninterpretable, and thus
uncontrolled

While GAN can synthesize better images, it does not have an encoder and
cannot learn an latent representation given an input image
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Related Disentangled Conclusion

/\ Goals

v' Construct a flexible, interpretable generative model that can generate realistic images

v And be able to learn a disentangled representation so that the output images can be manipulated
by controlling the latents
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Intro Background Disentangled Conclusion

J/\ Background
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Intro Related Disentangled Conclusion

J/\ Background: GAN

D tries to estimate a distance while G tries to minimize it

m(%n max V(D,G) = E,._p[log D(x)] + E__p [log(1 — D(G(2)))] WP, P,) = mén mle)lx Ey.p [D()] — [EJ-CNPg [D(%)]

where D is 1-Lipschitz

Different
GANSs
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Intro Background Disentangled Conclusion

/\ Background: VAE

Lower bound of log-likelihood:
Inp(x)
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Intro Related Disentangled Conclusion

J\ VAE with partitioned latent code

feature|extractor concatenate
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VAE With partitionEd Iatent COde Intro Related Disentangled Conclusion

Different uses of generative models:

1.Feature learning:

Auto-encoding: X — (Zl, 22) — x’ T

feature|extractor concatenate

3.Fusion (editing) :
Sample images independently: © ~ ., © ~ P,

Encode: 21 ~~ Ql(‘|iff) 52 ~ QQ(l%)

Fusion:  (z1,Z,) = X
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VAE with partitioned latent code :

Intro Related Disentangled Conclusion

Entanglement of information
mutual information between zz and x' can be shared by z: :

I(z5;x") = I(z5; X" |21) + 1(21; 253 X). Zi

e.g.,:
z; = E((x), z; = Ey(x), x' = E{'(z).

1{x;zafz2.x")

mutual information between z izt

and x'is maximized, but z2is X X’
ong W21, 220" (22| x" wzvzax)  (zgzs \

not utilized by G at all pepa) ek Tee e

Therefore, mutual information
between z: and X’ should be
maxminzed, but not shared by z:!

Hxzalzs.X)

Approach: maximize the -
conditional mutual inforamtion: Z2

I(zy;x"|2))
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VAE with partitioned latent code Intro  Related Disentangled  Conclusion

Optimizable lower bounds: maximizing the conditional Ml is to minimize the reconstruction loss when the latents are independent

Maximize:

I(Z,;X|z;) 2 E[log g(Z,|z1, X)] + H(Z5|z¢).
If 2, and z,; are independent, and H(z,) is constant, then one can
minimize
Lfl = —[E[log q(Z,|z,X)]. (Reconstruction loss of Z)

If QO(-|z,,%) is a Benoulli distribution, it becomes the cross-entropy loss

Or maximize
I1(Z,; Jj*i\7|z1) > [E[log q*(f(i’ﬂzp X)] + H(f(x)).( Reconstruction loss of /(%) )

Under a Gaussian assumption, we have

Ly, = E[llf(G(z, %)) — f(R)I3]
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VAE With partitioned Iatent COde Intro Related Disentangled Conclusion

The use of CGAN

Conditional mutual information maximization does not guarantee fidelity
e.g., samples overfitting the classifier can be unrealistic

D estimaites the Jensen-Shannon Divergence (JS-Divergence) between P(Z,%) Al P(z,,x")

Ly =-2J8D(P(zy,x")||P(Z,, %)) + log(4)

= E[log D(z,, x") + log(1 — D(Z,, X))]

While G tries to minimize:

Lsan = —E[log(D(Z,, X))]
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Intro Related Disentangled Conclusion

J/\ Fusing color and sketch of CMNIST

Comparison methods:

VAE

VAE+Ls(InfoGAN)

VAE+GAN

VAE+Le Ly = E[| f(G(z, %) — FR)I5]

VAE+GAN+L#
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Disentangled Conclusion

J/\ Fusing color and sketch of CMNIST

input
images

input
sketches

fusion
outputs

(a) VAE (b) VAE + Ls(InfoGAN) (c) VAE + Ly, (ours) (d) VAE + GAN (e) VAE + GAN + Lyo
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Intro Related Disentangled Conclusion

J/\ Controlling attributes of CelebA

Comparison methods:

CVAE logp(X|C) Z IEz~Q(-|x,c)[10gp(x|zv C)] E= DKL(Q( |x= C)l |P(Z|C))
VAE+GAN (Mathieu et al, also ablation study)
VAE+Ls1(ablation study) L,y = —E[log q(Z;|z1, %)]

VAE+GAN+Ls1(ours)
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Intro Related Disentangled Conclusion

J/\ Flipping attributes of CelebA
Qualitative comparison:

Wlthout the GAN loss, the output can be unrealistic; without the information loss, the output can be unchanged

(d) VAE+cGAN (¢) VAE4INFO () VAE+« ‘GAN+INFO d) VAE+cGA ¢) VAE+INF () VAE+GA
(propose (proposed)

Fig. 4. Flipping 22 when it represents “Smiling”. Fig. 5. Flipping 22 when it represents “Young”.
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Intro Related Disentangled Conclusion

\ Controlling attributes Classifier accuracy Lower bound of
. of Ce|ebA on fusion images conditional mutual information

lower bound of conditional mutual information in fusion classification accuracy on fusion data
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J/\ Controlling attributes of CelebA
Interpolations and extrapolations

(when z2represents “young” ) :
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Intro Related Disentangled Conclusion

J/\ Controlling attributes of CelebA

Control multiple attributes at the same time:

not (¢) not smiling,
young, male

(d) not smiling, young. (e) not smiling. young, (f) smiling. not young,
female male female

(g) smiling, not young, (h) smiling, young. fe- (i) smiling, young, male
male male
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Intro Related Disentangled Conclusion

N

- We give a rigorous derivation of a variant of VAE with partitioned code, and analyze
o the phenomenon of entangled information from an information-theoretic perspective
conCIUSIonS - Derive optimizable lower bounds of conditional mutual information

- Use the proposed method to learn disentangled representation and perform

controllable image synthesis

- Use some recent state-of-the-art GANs such as StyleGAN2-ADA or MIX-GAN

- Resolve the difficulty in optimization when there are too many loss terms

- Experiment on some more attributions and ethnically diverse datasets

For more theoretical and experimental results, please refer to the paper and the supplementary material!
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