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Executive summary

» Show that Deep Reinforcement Learning (DRL) can shed new
lights on portfolio allocation

* Advantages:
 DRL maps directly market conditions to actions
* No bias or influence from risk assumption
e Can incorporate more inputs
* Can detect crisis pattern



Context

* In asset management, there is a gap between mainstream used
methods and new machine learning techniques around RL

 DRL has achieved strong results in challenging tasks like
autonomous driving, games solving like Atari (Mnih et al. 2013),

Go (Silver et al. 2018)



Machine learning in finance

e Surprisingly, ML is still not widely used in Asset Management.
This may come from the fact that asset managers have been
mostly trained with econometric and financial mathematics
background



Related works

e Portfolio: Markowitz 1952, Minimum variance, maximum
diversification, maximum decorrelation, risk parity:.

 RL has started been used in portfolio allocation with works like
Jiang and Liang 2016; Zhengyao et al. 2017; Liang et al. 2018; Yu
et al. 2019; Wang and Zhou 2019; Saltiel et al. 2020; Benhamou
et al. 2020b; 2020a; 2020c



Traditional methods
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Traditional methods explained

denote by w = (wyq, ..., w;) the allocation weights

1= (p1, ..., j7)T be the expected returns

Y. the matrix of variance covariances
T'min D€ the minimum expected return

Minimize wTXw

w

(D

subject to ,uTw = Prins Z w; =1,1>2w >0

i=1...1



Example

Efficient Frontier
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Figure 1: Markowitz efficient frontier for the GAFA: returns
taken from 2017 to end of 2019



Minimum variance portfolio

Minimize w! Xw

(K

subject to Z w, =1,1>2w =10
i=1...1



Maximum diversification portfolio

T
. . w a
Maximize

subject to Z w; =1,1>w >0
i=1...1

o = (X;:)i=1.1. the diagonal elements of the covariance matrix ¥
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Maximum decorrelation portfolio

Minimize w! Cw

T

subject to Z w; =1,1>2w=10
i=1...1
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Risk parity portfolio

I
. I + 1
Mmgmze S Y — Egln(u}i)
subject to Z w; =1,1>2w =10
i=1...1
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Reinforcement learning

Maxi{n}’lize E[Rr]

subject to  a; = w(s¢)
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Mathematical formulation

* MDP setting

A Markov decision process 1s defined as a tuple M =
(X, A, p,r) where:

« A is the state space,

« A is the action space,

pl(y|z, a) is the transition probability such that
ply|z,a) =P(xii1 = y|lz = x,0; = a),

r(x,a,y) is the reward of transition (x, a, y).
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Regular observations

* Regular observations:

k
* Past returns re = p};i* — 1 where pf is the price at time ¢ of the asset A
t—1

* Empirical standard deviations of = \/ : S vq Ty — i)° useful
to detect regime changes

—p three dimensional tensor A, = [A;, A7
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Contextual observation

* Risk aversion index
e Correlation between equities and bonds

e Citi economic surprise index
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Action

* Portfolio weights: (p/,.... , p/!) modelled by a softmax layer

17



Reward

 Final net profit: For 1
Pr,

* Sharpe ratio: ,LL/O'

* Sortino ratio: / %l where

& is the downside standard deviation
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A complex network
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Fig. 3. Possible DRL network architecture
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Particularities of our network

e Multi inputs
e Multi outputs

 Compared to traditional portfolio method can incorporate
leverage separately from normal portfolio weights
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Training of the network

» Adversarial policy gradient: noise on data as we have a single
experiment and wants to have different scenarios

* Replay buffer as the reward is only at the final period
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Algorithmic in details

Algorithm 1 Adversanal Policy Gradient

1: Input: initial policy parameters #, empty replay buffer D

2: repeat

3:  reset replay buffer

4. while not terminal do

5 Observe observation o and select action a = ma(0)
with probability p and random action with proba-
bility 1 — p,

% Execute @ in the environment

7: Observe next observation o', reward r., and done
signal d to indicate whether o' is terminal

8: apply noise to next observation o’

9: store (o0, a, o) in replay buffer D

10 if Terminal then

11: for however many updates in D do

12: compute final reward

13: end for

14: update network parameter with Adam gradient

ascent # — 0 + AV gJo.4)(mz)
15: end if
16:  end while

17: until convergence
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Other parameters

* Learning rate of 0.01
e Adversarial Gaussian noise with a standard deviation of 20bps

* 500 maximum iterations with early stop if no improvement over
the last 50 iterations
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Walk forward analysis

e Standard k-fold cross validation does not work in finance as it
uses futures information in train set

#1: | Test

# 9 Test

# 3 Test

H 4 Test

# 5: Test

# 6 Test




Solution walk forward

#1:
# 2
# 3:
# 4.

Test

Test

Test

Test

Figure : anchored walk forward

25



Experiments

 Data from 01/05/2000 to 19/06/2020
* Risky asset = MSCI world index
* Hedging strategies 4 SGCIB proprietary hedging strategies
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Hedging strategies

* Directional hedges - react to small negative return in equities,
* Gap risk hedges - perform well in sudden market crashes,

* Proxy hedges - tend to perform in some market configurations,
like for example when highly indebted stocks under-perform other
stocks,

* Duration hedges - invest in bond market, a classical diversifier to
equity risk in finance.



Evaluation metrics

* Annualized return
* Annualized daily based Sharpe ratio

* Sortino ratio (ratio of annualized return over the downside
standard deviation)

* Maximum daily drawdown (max DD)
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Baseline

* Pure risky asset
e Markowitz
e Follow the winner

e Follow the loser
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Results in numbers

TABLE 1
PERFORMANCE RESULTS
Portfolio | Portfolio | Portfolio | Dynamic Deep RL | Deep RL | Naive
1 2 3 Markovitz | Net_profit Sharpe winner
Net Performance -6.3% -2.1% 3.9% 0.7% 8.8% 8.6% 3.9%
Std dev 6.1% 6.5% 1.3% 4.3% 4.5% 4.2% 1.3%
Sharpe ratio na na 0.53 0.17 1.95 2.08 0.53
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Usage of contextual information

e

Contextual
information

(+)} Other assais price data
(+) Other predictive data
(cormalation between data)
(+} Other unstructured
data (economic surprise,
risk aversion index)

allocation

Optimal portfolio

N

Manager’s
objective

Asset states

(+) net parfiormance
(+) Sharpe ratio

(+) historical strategies
raturns
(+) historical standard

dewiation

Fig. 1. Portfolio allocation problem
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Impact of context

TABLE 11
RESULTS OF THE VARIOUS MODELS
| Reward ‘ Adversanal | Network | Previous | Context? | Annual Sharpe |
training? weight? returm
| MetProfit | No | Com2D | No | Yes | 88% | 195 |
| Sharpe | Yes | Com2D | Mo | Yes | g6% | 208 |
| NetProfit | No | Com2D | Yes | Yes | 85% | 203 |
| Sharpe | Mo | Com2D | No |  Yes | 84% | 201 |
| MetProfit | Yes | Comv2D | No | Yes | 8.0% | 135 |
| NetProfit | Yes | Comv2D | No | No | 7.7% | 1.94 |
| Sharpe | No | Comv2D | No | No | 64% | 131 |
| NetProfit |  No | LSTM | No | Yes | 626 | 149 |
| MetProfit | No | Comv2D | No | No | 34% | 0.97 |
| Shape | Yes | LSTM | No | Yes | 54% | 123 |
| NetProfit | Yes | LSTM | No | VYes | 51% | 003 |
| NetProfit | Yes | Com2D | Yes | VYes | 43% | 063 |
| Sharpe | Yes | Comv2D | No | No | 4I% | 0.69 |
| NetProfit | No | LSTM | Yes | Yes | 38% | 052 |
| Sharpe | No | Conmv2D | Yes | No | 38% | 0.52 |

| NetProfit | No | Comv 2T | Yes | Yes | 3.B% | .52 |
| Sharpe |  Yes | LSTM | Yes | Yes | 386 | 052 |
| Sharpe | Yes | Com2D | Yes | Yes | 37% | 051 |
| NetProfit | Yes | Com2D | Yes | No | 37% | 051 |
| NetProfit | No | LSTM | Yes | No | 36% | 049 |
| NetProfit | Yes | LSTM | Yes | Yes | 3.5% | 048 |
| NetProfit | Yes | LSTM | No | No | 34% | 124 |
| Sharpe | No | LSTM | Yes | Yes | 34% | 48 |
| NetProfit | No | LSTM | No | No | 34% | 047 |
| Sharpe | Yes | Comv2D | Yes | No | 34% | 051 |
| MetProfit | Yes | LSTM | Yes | No | 23% | 097 |
| Sharpe | Yes | LSTM | No | No | 23% | 032

| Sharpe | No | LSTM | No | s | 1.5% | 022

| Sharpe | No | Comv2D | Yes | No | 09% | 013 |
| Sharpe | Yes | LSTM | Yes | No | -51% | na |
| Sharpe | No | LSTM | No | No | -51% | na |
| Sharpe | No | LSTM | Yes | No | -51% | na |
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Hyper parameters used

TABLE IV
HYPER PARAMETERS USED

by peer- value description
parameters

| batch swe | 50 | Sze of mini-baich duning tramming |
regularization le-8 | Lo mgulanzation coefficient applied to
cocfficient network traming

| learming rate | 001 | Step size parameter i Adam |
standard devi- 20 days | penod for standard deviation in asset
ation period states
commission | 10 bps | commission rate |
stride | 21 | stnde used in convolution networks |
conv number 1 | 5.10 | number of convolutions in sub-network 1 |
conv number 2 | 2 | number of convolutions in sub-network 2 |

lag penod 1 | [60,20,4,3,.2,1,0] | lag peniod for asset stakes |
lag period 2 | [60,20,4,3,.2,1.0] | lag period for contextual states |
noise | 0.002 | adversarial Gaussian standard deviation |
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Future work

e Test more contextual data

* Impact of more layers and other neural network design choice
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