Cluster size constrained network partitioning

Maksim Mironov¹ Konstantin Avrachenkov²

¹Moscow Institute of Physics and Technology, Moscow, Russia

²Inria Sophia Antipolis, Nice Area, France

- We have a random graph $G_{sbm} = (V, E)$ with two blocks V_1, V_2 , where $V = V_1 \sqcup V_2$
- For each pair of nodes $\{v, u\}$ an edge is drawn independently according to

$$P(\{v, u\} \in E) = \begin{cases} p_1, & v, u \in V_1, \\ p_2, & v, u \in V_2, \\ q, & \text{overwise,} \end{cases}$$

- For simplicity of presentation we assume the case of equal blocks, $|V_1| = |V_2|$.
- Values p_1, p_2, q are considered as functions of n.

イロト イヨト イヨト イヨト 二日

- We have a full graph $G_{mf} = (V, E)$ with two blocks V_1, V_2 , where $V = V_1 \sqcup V_2$
- For each pair of nodes $\{v, u\}$ an edge has its weight according to

$$Weight (\{v, u\}) = \begin{cases} p_1, & v, u \in V_1, \\ p_2, & v, u \in V_2, \\ q, & \text{overwise}, \end{cases}$$

• There is no need to partition the G_{mf} graph – everything is already clear

イロト イヨト イヨト ・

Formal description of the problem

• We have a graph G(V, E) and set of configurations

$$\{-1,1\}^V \supset \Sigma = \left\{ \sigma \mid \sum_{v \in V} \sigma(v) = 0 \right\}$$

here $\sigma(v)$ denotes label of v.

• We introduce the global energy of the configuration as

$$\varepsilon(\sigma) = -\sum_{\{u,v\}\in E} \sigma(u)\sigma(v). \tag{1}$$

• We naturally introduce a local energy defined by

$$\varepsilon(\sigma, \mathbf{v}) = -\sigma(\mathbf{v}) \sum_{w \sim \mathbf{v}} \sigma(w).$$
⁽²⁾

Algorithm

- Choose n/2 nodes to have label -1 at random and n/2 others are set with 1
- Ochoose randomly a pair of nodes with different labels
- Or Calculate the sum of their local energies ε₁ as if they are labeled as it is, and ε₂ in case they swap their labels
- Choose either original labels or swapped ones based on flip of a biased coin with probability

$$p = \frac{\exp(-\beta\varepsilon_1)}{\exp(-\beta\varepsilon_1) + \exp(-\beta\varepsilon_2)}$$

- If stop criteria is not met go to step 2
- Iterate over all nodes and update the label of each of them based on weighted majority of its neighbours

イロト イヨト イヨト

Theorem

Let $p_1 + p_2 > 2q$ and $p_1 > q$. Then, the expected number of steps T to obtain the exact global optimum in the mean-field SBM is upper bounded by

$$\mathrm{E} T = O(n^2)$$

Theorem

Let $p_1 + p_2 > 2q$ and relative clustering error $\delta = o(1)$. Then, the expected number of steps T to obtain the almost exact global optimum in the mean-field SBM is upper bounded by

$$ET = O\left(\frac{n}{\delta}\right)$$

Simulations for SBM

▲□▶▲□▶▲□▶▲□▶ = ● ●

7 / 10

Simulations for SBM

$$n = 10000, \alpha = 1, p = \frac{a \ln(n)}{n}, q = \frac{b \ln(n)}{n}$$

Figure: Our algorithm

Figure: Spectral clustering

Advantages:

- the running time complexity of the algorithm is roughly $\bar{d} \cdot n/\delta$ for the SBM graphs;
- the algorithm can be effectively distributed over any number of machines with shared memory and with no need in synchronization;
- the approach can be customized with different objective functions.

Drawbacks:

- the output of the algorithm is not reproducible, it is a result of a random process;
- for the extremely difficult problems it works worse than the spectral clustering in the case of balanced clusters.

イロト イポト イヨト イヨト

Thanks for the attention!

10 / 10