

From Human Pose to On-Body Devices for Human-Activity Recognition

Fernando Moya Rueda, Gernot A. Fink

Pattern Recognition in Embedded Systems Group, Technische Universität Dortmund 10. Dezember 2020

Human Activity Recognition HAR

... letting someone go shopping for you.

Goal: analyze this industrial process using data from wearables.

Data-driven HAR

Human Activity Recognition using Wearables.

technische universität dortmund

Related Work- Traditional approach

Traditional pipeline using statistical features: min, max, average and standard deviation for analyzing the order picking task.

^[1] S. FELDHORST, M. MASOUDINEJAD, M. TEN HOMPEL und G. A. FINK: Motion Classification for Analyzing the Order Picking Process Using

Related Work- Temporal convolution networks

Deep convolutional neural network using temporal-convolution layers for multichannel time series HAR [1][2].

 J. YANG, M. N. NGUYEN, P. P. SAN, X. LI und S. KRISHNASWAMY: Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition. In: IJCAI, S. 3995–4001, 2015
 N. Y. HAMMERLA, S. HALLORAN und T. PLÖTZ: Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using Wearables.

In: Proc. Int. Joint Conference on Artificial Intelligence (IJCAI), 2016

technische universität dortmund

Related Work - Temporal Convolution Network

CNN architecture processing IMUs independently and late fusion [1].

Recognition for the Order Picking Process. In: Proc. Int. Workshop on Sensor-based Activity Recognition and Interaction (iWOAR), Rostock, Germany, 2017

^[1] R. GRZESZICK, J. M. LENK, F. M. RUEDA, S. FELDHORST, M. TEN HOMPEL und G. A. FINK: Deep Neural Network based Human Activity

U technische universität dortmund

Related Work - Annotation

Graphical representation of the HAR using attribute representations as an intermediate layer.

N = 1	Effort Assessment			
	Rec.	Total time[h]	Time per Rec.[h]	
A1	38	49:18	$01:17 \pm 00:24$	
A2	37	72:06	$01:56 \pm 00:34$	
A3	36	48:55	$01:21 \pm 00:30$	
A4	28	37:19	$01:19\pm00:37$	
A5	30	84:18	$02:48 \pm 01:19$	
A6	38	23:11	$00:36\pm00:17$	
All	207	303:27	$01:25 \pm 00:57$	

F. NIEMANN, C. REINING, F. MOYA RUEDA, E. ALTERMANN, N. R. NAIR, J. A. STEFFENS, G. A. FINK und M. TEN HOMPEL: Logistic Activity Recognition Challenge (LARa) – A Motion Capture and Inertial Measurement Dataset, 2020

7/20

Related Work - Transfer Learning

Across subjects within the same dataset; different datasets; and across datasets, device positions, and sensor types

[1] F. J. ORDÓÑEZ MORALES und D. ROGGEN: Deep Convolutional Feature Transfer across Mobile Activity Recognition Domains, Sensor

Modalities and Locations. In: Proc. of ACM ISWC, S. 92–99, New York, NY, USA, 2016. Association for Computing Machinery

Approach

 Graphical representation of the HAR using attribute representations as an intermediate layer.

technische universität dortmund

Dataset

LARa is a large dataset of recordings of 714[min] from subjects in the Intralogistics. It consists of measurements from a marker-based MoCap system and On-Body Devices (OBs). A synthetic set is created by derivating sequences of joint poses, LARA SOBs.

F. NIEMANN, C. REINING, F. MOYA RUEDA, E. ALTERMANN, N. R. NAIR, J. A. STEFFENS, G. A. FINK und M. TEN HOMPEL: Logistic Activity Recognition Challenge (LARa) – A Motion Capture and Inertial Measurement Dataset, 2020

LARa Dataset

Lara-Set	Rec. Rate	Measurements	Dimensions	Channels
LARa-MoCap LARa-OBs	200Hz 100Hz	22 Joint Poses 5 On-Body Devices	$\begin{bmatrix} Pos_{x,y,z}, Rot_{x,y,z} \\ [Acc_{x,y,z}, AngAcc_{x,y,z} \end{bmatrix}$	132 30
LARa-SOBS	200/100Hz	22 Joint Poses	$[Pos_{x,y,z}, Rot_{x,y,z}]$	132

F. NIEMANN, C. REINING, F. MOYA RUEDA, E. ALTERMANN, N. R. NAIR, J. A. STEFFENS, G. A. FINK und M. TEN HOMPEL: Logistic Activity Recognition Challenge (LARa) – A Motion Capture and Inertial Measurement Dataset, 2020
 10/20

Evaluation

- Baseline IMU-CNN using Softmax as a classifier on LARa
- Deep learning architectures for predicting Attributes
 - Opportunity [1] contains recordings from 7 OBs with a recording rate of 30HZ from 4 Subjects.
 - Locomotion
 - Gestures
 - Pamap2 [2] contains recordings from 3 OBs and a HR monitor with a recording rate of 100HZ from 9 Subjects.

^[1] R. CHAVARRIAGA, H. SAGHA, A. CALATRONI, S. T. DIGUMARTI, G. TRÖSTER, J. D. R. MILLÁN und D. ROGGEN: The Opportunity challenge:

A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters, 34(15):2033–2042, 2013

^[2] A. REISS und D. STRICKER: Introducing a new benchmarked dataset for activity monitoring. In: ISWC, S. 108–109. IEEE, 2012 11/20

Evaluation - HAR on LARa

Datasets on Activities of Daily Living

Dataset	tCNN	IMU-tCNN
LARa MoCap	74.86 ± 0.7	75.47 ± 0.6
LARa MoCap100	76.07 ± 0.5	76.32 ± 0.2
LARa MoCap30	75.60 ± 0.3	76.53 ± 0.0
LARa SOBs	55.46 ± 0.6	60.06 ± 0.3
LARa SOBs30	56.16 ± 0.3	56.10 ± 0.4
LARa OBs	75.75 ± 0.4	75.65 ± 0.4
LARa OBs30	76.02 ± 0.0	75.63 ± 0.0

Evaluation - Transfer on Locomotion

▶ Locomotion dataset using the tCNN and the IMU-tCNN. The networks are trained from scratch (None) or pretrained on LARa datasets. Mean and std from the wF1[%] are given as training method is repeated five times.

Deterrite	tCNN			
Datasets	None	SOBs30	MoCap30	OBs30
Locomotion-20	73.93 ± 0.8	83.79 ± 0.6	83.86 ± 0.4	84.18 ± 0.1
Locomotion-50	79.92 ± 0.5	84.03 ± 0.0	84.28 ± 0.0	85.26 ± 0.0
Locomotion	84.53 ± 0.2	88.43 ± 0.3	88.74 ± 0.0	87.75 ± 0.3
	IMU-tCNN			
Deterrete		IMU-	tCNN	
Datasets	None	IMU- SOBs30	tCNN MoCap30	OBs30
Datasets Locomotion-20	None 78.85 ± 1.0	SOBs30 80.53 ± 0.3	$rac{\text{MoCap30}}{81.45\pm0.4}$	OBs30 76.92 ± 0.3
Datasets Locomotion-20 Locomotion-50	None 78.85 ± 1.0 $77.01 \pm 0.$	$\frac{\text{IMU-}}{\text{SOBs30}}$ $\frac{80.53 \pm 0.3}{80.80 \pm 0.0}$	$\frac{\text{MoCap30}}{\textbf{81.45}\pm\textbf{0.4}}\\\textbf{83.52}\pm\textbf{0.3}}$	$ OBs30 76.92 \pm 0.3 77.92 \pm 0.5 $

Evaluation - Transfer on Locomotion

Harmonic Mean of Precision and Recall [%] per class activity for the Locomotion dataset using the tCNN, trained from scratch and using the LARa-MoCap.

Evaluation - Transfer on Gestures

▶ Gestures dataset using the tCNN and the IMU-tCNN. The networks are trained from scratch (None) or pretrained on LARa datasets. Mean and std from the *wF*1 [%] are given as training method is repeated five times.

Deterrete	tCNN				
Datasets	None	SOBs30	MoCap30	OBs30	
Gestures-20	85.20 ± 0.3	84.60 ± 0.0	85.60 ± 0.1	84.45 ± 0.2	
Gestures-50	87.79 ± 0.3	87.20 ± 0.1	87.45 ± 0.6	86.26 ± 0.2	
Gestures	90.90 ± 0.1	91.13 ± 0.1	90.92 ± 0.3	90.64 ± 0.1	
Deterrite	I	IMU-1	CNN		
Datasets	None	IMU-1 SOBs30	tCNN MoCap30	OBs30	
Datasets Gestures-20	None 85.20 ± 0.3	IMU-1 SOBs30 84.60 ± 0.0	tCNN MoCap30 85.60 ± 0.1	OBs30 84.45 ± 0.2	
Datasets Gestures-20 Gestures-50	None 85.20 ± 0.3 87.79 ± 0.3	$\frac{\text{IMU-t}}{\text{SOBs30}}$ $\frac{84.60 \pm 0.0}{87.20 \pm 0.1}$	tCNN MoCap30 85.60 ± 0.1 87.45 ± 0.6	OBs30 84.45 ± 0.2 86.26 ± 0.2	

Evaluation - Transfer on Pamap2

The wF1 [%] of the tCNN and the IMU-tCNN on the Pamap2 dataset. The networks are trained from scratch (None) or pretrained on LARa datasets. Mean and std from the wF1 [%] are given as training method is repeated five times.

Detecto	tCNN			
Datasets	None	SOBs	MoCap100	OBs
Pamap2-33	33.8 ± 22.7	65.4 ± 3.2	59.4 ± 2.4	61.3 ± 2.1
Pamap2-50	88.5 ± 0.4	89.2 ± 0.2	91.5 ± 0.3	91.5 ± 0.7
Pamap2	87.0 ± 0.4	91.0 ± 0.4	89.7 ± 1.5	91.2 ± 0.6
	IMU-tCNN			
Datacate		IMU-t	:CNN	
Datasets	None	IMU-t SOBs	CNN MoCap100	OBs
Datasets Pamap2-33	None 62.9 ± 0.8	SOBs 60.4 ± 1.1	$\frac{\text{CNN}}{\text{MoCap100}}$ 62.1 \pm 4.0	OBs 49.7 ± 1.1
Datasets Pamap2-33 Pamap2-50	None 62.9 ± 0.8 88.5 ± 0.9	$ IMU-t SOBs 60.4 \pm 1.1 88.9 \pm 1.3 $	$\frac{\text{CNN}}{\text{MoCap100}} \\ \hline 62.1 \pm 4.0 \\ 91.0 \pm 0.3 \\ \hline \end{array}$	$ OBs 49.7 \pm 1.1 84.7 \pm 2.1 $

The wF1 [%] of the best tCNN and IMU-tCNN pretrained with LARa-MoCap and -SOBs on the three datasets. Results are compared with the benchmark networks on the datasets.

Architecture	Pamap2	Locomotion	Gestures
tCNN[1]	87.37	87.8	85.1
tCNN[2]	87.2	-	90.8
IMU-tCNN[3]	89.01	88.23	92.15
tCNN-SOBs	90.95	88.43	91.31
tCNN-MoCap	91.48	88.74	90.86
tCNN-OBs	91.53	87.75	90.97

 F. J. ORDÓÑEZ und D. ROGGEN: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors, 16(1):115, 2016

In: Proc. Int. Joint Conference on Artificial Intelligence (IJCAI), 2016

Recognition for the Order Picking Process. In: In Proc. of the 4th Int. Workshop on Sensor-based Activity Recognition and Interaction. ACM, 2017 17/20

^[2] N. Y. HAMMERLA, S. HALLORAN und T. PLÖTZ: Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using Wearables.

^[3] R. GRZESZICK, J. M. LENK, F. M. RUEDA, G. A. FINK, S. FELDHORST und M. TEN HOMPEL: Deep Neural Network based Human Activity

Conclusion

- We have presented an approach for solving multichannel time-series HAR using transfer learning across different data sources, namely, from human joint-poses to inertial measurements.
- We proposed to use synthetic-inertial measurements as an additional source. The synthetic measurements are derived from human joint-poses.

Conclusion

- This approach is a sort of transfer learning across three target domains with different physical, but related, measurements, different number of on-body devices, and recording rates.
- Architectures' performances improved for all three target datasets, even when deploying a proportion of them.

Conclusion

Thank you for your kind attention