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Motivation
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Main Contributions:
 introduction of a reinforcement learning 

based (RL) deep single object tracker for 
drone videos,

 introduction of a novel reward function 
for an improved performance for tracking 
objects in drone videos,

 introduction of new action types for 
drone data sets,

testing our algorithm on two data sets: 
VisDrone2019 and OTB-100.
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Goal:
To develop a deep reinforcement

learning (RL) based single object
tracker for drone images



Deep RL-Based Trackers

• RL based deep trackers have been utilized on ground taken videos lately in the 
literature (see for example: ADNet* )

• We study the performance of RL based visual object trackers on drone videos and 
introduce four new RL based trackers. In those four models:

We study the effect of including new actions.

We study the effect of architectural changes in the model. 

We study the effect of reward function.

3* Yun, Sangdoo, et al. "Action-decision networks for visual tracking with deep reinforcement learning." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.



Deep RL-Based Trackers

• The action-decision network, ADNet*, determines the future 
position of the object of interest in terms of a predicted action 
sequence, and each action in the sequence is predicted from 
the current state.

• A Markov Decision Process strategy for tracking
• States 𝑠 ∈ 𝑆

• Actions a ∈ 𝐴

• State transition function 𝑠′ = 𝑓(𝑠, 𝑎)

• Reward function 𝑟(𝑠, 𝑎)

• Training
1. Supervised learning – {𝒘𝟏,𝒘𝟐,… ,𝒘𝟕}

2. Reinforcement learning – {𝒘𝟏,𝒘𝟐,… ,𝒘𝟔}

3. Online adaptation in tracking – {𝒘𝟒,𝒘𝟓,𝒘𝟔,𝒘𝟕}
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Fig. 3: Architecture of our baseline network, ADNet.

* Yun, Sangdoo, et al. "Action-decision networks for visual tracking with deep reinforcement learning." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.



Our Action-Sequence-Based RL Trackers
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Fig. 4: The set of actions defined for (a) our base-network 

in ADNet, and for (b) Model-A.

Model A: Study the effect of using different actions

• Action set utilization
o 12 directional movements

o 2 actions for scale changes

o 1 terminal action (stop)



Our Action-Sequence-Based RL Trackers
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Model B: Study the effect of changing backbone network

• Backbone network
o ADNet uses VGG-M [4] 

o Model-B uses VGG-F [4]

Fig. 5: Architecture of Model-B.



Our Action-Sequence-Based RL Trackers
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Model C: Study the effect of reward function

𝑟 𝑠𝑇 =  
10 − 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎𝑡,𝑙 ∗ 𝐼𝑜𝑈 𝑏𝑇 , 𝐺 , 𝑖𝑓 𝐼𝑜𝑈 𝑏𝑇 , 𝐺 > 0.70

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Adjustments

Reward function RL algorithm

Data: Pre-trained network (WSL), training sequences {Fl} and ground 
truths {Gl} 

Result: Trained network weights (WRL) Initialize WRL with WSL;
while WRL does not converge do 

Randomly select {Fl}Ll=1 and {Gl}Ll=1 

Set initial b1,1 ← G1

Set initial d1,1 as zero vector
T1 ← 1 

for l ← 2 to L do
{at,l}, {bt,l}, {dt,l}, Tl ← TRACKING(bTl−1,l−1, dTl−1,l−1, Fl) 

Compute tracking scores {zt,l} with {bt,l} and {Gl }

Calculate ∆WRL

Update WRL using ∆WRL 

end
end 

Algorithm 1: Action-Sequence-Based Tracker (Model-C) 

A hybrid reward function in the reinforcement 
learning stage, where the length of action set and the 
overlap ratio are both included during the rewarding 
process:



Our Action-Sequence-Based RL Trackers
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Model D

𝑟 𝑠𝑇 =  
1, 𝑖𝑓 𝐼𝑜𝑈 𝑏𝑇 , 𝐺 > 0.70

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Data: Pre-trained network (WSL), training sequences {Fl} and ground 
truths {Gl} 

Result: Trained network weights (WRL) Initialize WRL with WSL;
while WRL does not converge do 

Randomly select {Fl}Ll=1 and {Gl}Ll=1 

Set initial b1,1 ← G1

Set initial d1,1 as zero vector
T1 ← 1 

for l ← 2 to L do
{at,l}, {bt,l}, {dt,l}, Tl ← TRACKING(bTl−1,l−1, dTl−1,l−1, Fl) 

Compute tracking scores {zt,l} with {bt,l} and {Gl }

Calculate ∆WRL

Update WRL using ∆WRL 

end
end 

Algorithm 1: Action-Sequence-Based Tracker (Model-C and Model-D) 

The reward function of our baseline network, ADNet:

Reward function RL algorithm



Used Data Sets

• Training data set

 VOT2013, VOT2014 and VOT2015 [2]  (58 videos)

• Test data set

 OTB-50 and OTB-100 [3]  (100 videos)
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Fig. 1: Sample frames from VOT data sets.

• Training data set

 VisDrone2019-SOT trainset part1 [4] (43 aerial videos)

• Test data set

 VisDrone2019-SOT valset (11 aerial videos)

Fig. 2: Sample frames from VisDrone2019 data set.

Data Sets

Ground-taken videos Drone videos



Results & Analysis
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Overall Performance

Experiment Type Model

OTB-100 VisDrone2019

Precision
(20 pixels)

FPS IoU
Precision
(20 pixels)

FPS IoU

Baseline model ADNet 78.47% 4.89 0.603 89.15% 6.33 0.579

Action set Model-A 79.45% 4.58 0.612 91.94% 6.08 0.557

Backbone network Model-B 77.15% 8.11 0.574 89.67% 6.53 0.553

Reward function

Model-C 80.61% 6.25 0.589 93.02% 5.61 0.611

Model-D 81.62% 7.02 0.616 91.74% 6.13 0.615

TABLE I: Comparison of our proposed methods to the baseline 

algorithm on OTB-100 and VisDrone2019 data sets.
ADNet vs. Model-D on Singer2. Green, blue and red bounding boxes

represent the ground truth, results of ADNet, and Model-D, respectively.

ADNet vs. Model-C on 

uav0000092_00575_s. Green, blue

and red bounding boxes represent the

ground truth, results of ADNet, and

Model-C, respectively.

ADNet vs. Model-A on 

uav0000317_02945_s. Green, blue

and red bounding boxes represent the

ground truth, results of ADNet, and

Model-A, respectively.



ADNet vs. Model-D on Panda. 

Green, blue and red bounding

boxes represent the ground

truth, results of ADNet, and

Model-D, respectively.

ADNet vs. Model-D on Skiing. 

Green, blue and red bounding

boxes represent the ground

truth, results of ADNet, and

Model-D, respectively.

Results & Analysis
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Challenging Aspects

Fig. 4: Average precision results of ADNet, Model-A, Model-B, Model-C, 

and Model-D across the set of videos from OTB-100, grouped by 

challenging aspects.
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