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Goal and Motivation

Goal

- Encoding of brain functional connectivity (FC) data to discriminate
between healthy controls (HC) and multiple-sclerosis (MS) patients

Motivation

« The FC analysis is based on graphs comparison, which is usually
done by Euclidean distance (ED

 Use of ED is sub-optimal because it does not capture the real
geometry of manifold of symmetric positive definite (SPD) matrices

A Better choice is to exploit the geometrical nature of SPD matrices
on Riemannian manifold.
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Method (Datasets)

Dataset : Private dataset collected at the Neuroimaging Research Unit (Hospital San
Raffaele, Milan, Italy)

- Resting state-functional magnetic resonance imaging (rs-fMRI)

+ 33 HC and 72 multiple-sclerosis (MS) patients (age matched)

. 37 relapsing-remitting (RRMS) and 35 Progressive (PMS)

« FC matrix size is 90x90, based on AAL atlas computed using covariance.
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The Pipeline

Geodesic
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Manifold Representation Geodesic Metric on Riemannian Manifold

+ sFC matrix of subject’s
Mean matrix of cluster

Cluster1 Cluster 2

Support Vector Machines — I Geodesic Clustering
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Method (chkground: Manifold Representation Of SPD Matrices)

xDx>0 Vx#0€eR

Symmetric Positive Definite
(SPD) Riemannian Manifold

Covariance based connectivity matrices {X}

« Set of symmetric & positive semi-
definite matrices.

- Represent the functional connectomes
showing both positively and negatively
synchronous connections

« Can be easily made SPD with a small
regularization ¥ =Y + 1I,

nill::
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Method (Background: Geodesic Analysis on Manifold)

Geodesic Medn

 Euclidean distance is sub-optimal because
it does not capture the real geometry of

manifold of SPD matrices Geodesic

Distance
Point A
 Use of Geodesic distance is proposed which
better define the distance along with

manifold.

PointB
r Manifold

+ Log-E distance eq.(1) [1] and geodesic
mean in the closed form eq.(2) [2].

Log — Euclidean Distance:  d;(2;2;) = ||log2; — log2; || (1)

n n
1
Geodesic Mean: 2, = exp {arginfy z ||log >; — log 2. ||?} = exp {z ZlogZi} (2)
= i=1

III h
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Method (Geodesic K-means Clustering of SPD Matrices)

« Aim:
» Cluster FC matrices into homogeneous groups of =
subjects. %fé =
A0S TR
« Underlying assumption: //m(‘\\g\)\‘\\\\ AT TN SO ‘:‘
ying assumption: | NI s
- Alterations in brain connections grasped by the """1"'"3"3‘3“3\\““‘\“\’:’ THHLIESS S
clusters. *M&&&;} '; ”II’}’I’I’""’?’“

K-means clustering was implemented using geodesic
distance and geodesic mean

Drawbacks in traditional K-mean?
* Need to pick ‘K’,
« Sensitive to initialization
« Sensitive to outliers
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Method (Geodesic Dominant set Clustering of SPD Matrices)
AIM
Cluster FC matrices into homogeneous groups of subjects.

. . /,,/'1'0 R
Dominant set clustering: N NS
/ -
. Yy VK8 | OO =
- Graph theoretic concept [3] ,//,,,,/,/,/;/:,“ A R

“\ D

\\{v ';l

- Computes well separated and compact subset of nodes

(dominant sets (DS) )
- Extraction of DS is sequential (one by one)

- can be solved using game dynamic e.g. replicator dynamics [4]  maximize xT Ax

- Clusters are more similar inside and less similar to outside. wi(i) > 0, forall i € 5 (internal homogeneity)
d, (. ) Wsup() <0, forall i€ S (external homogeneity)
- Data in form of similarity matrix S, j)=1- RAC)
' max(d;)

No prior information on number of clusters (since we extract them sequentially) .

Leaves clutter elements unassigned



Method (Feature Extraction and Classification)

» Due to high dimensionality of FC matrices (90x90), feature encoding is needed.
» Using cluster centroid as dictionary

- Building vector representation by computing geodesic distance from each cluster
centroid.

- Using this vector as feature set to classifier (Support Vector Machine, SVM).

» [7IIE | [ ] [ | [ | »
Distance Feature Vector

<4 sFC matrix of subject’s
<Mean matrix of cluster




Experlments

 For k-means Number of clusters were chosen to be variable between K=2-15.
« To avoid double dipping

- b-fold cross validation
 Training folds for clustering & extracting training features
« Test fold for computing test feature vector.

- Repeating 5-fold cross validation 100 time and taking mean of accuracies.
« Permutation test on labels (To check the significance of results).
« For Comparison, same analysis is performed using ED

Training folds

—— L.

Clustering and Extracting Training #
Features Vector Testing Features Vector * * *
1 ooTEE 1 1 * *
Training Features Vector Y : ;7 : |
e Class 1 Class 2
4 sFC matrix of subject’s ’
4 Mean matrix of cluster

SVM Classification
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Results

- Average of 100 iterations of 5-folds
cross validations of experiments:

- DS always extract 6 or 7 clusters,
so for comparison we implement
K-mean for K= 2-15

- HC vs MS: Accuracy 73.94 %
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HC vs MS Cross Validation Results

T T T

|

3 1 ] G 7 8 9 10 11 12 13 14
71.30 71.55 71.72 72.11 72.60 73.26 73.25 73.21 73.62 73.22 73.80 73.63
7157 71.53 T1.82 71.86 71.99 T1.73 T2.28 7213 71.93 72.26 7244 T2.00

TABLE 1
AVERAGE CONFUSION MATRIX OF CLASSIFICATION RESULTS FOR THE
PROPOSED MEAN GEODESIC DS CLUSTERING APPROACH AND BEST OF
GEODESIC K-MEANS CLUSTERING FOR HC vs. MS.

Geodesic Dominant-Set Geodesic k-means
Predicted Class Predicted Class
HC MS HC MS

Actual | HC | 13.98 19.02 HC | 145 18.5
Class | MS | 847 63.53 MS | 105 61.5

J
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73.62
72.45




R e S u I tS B) 80 HC vs RRMS Cross Validation Results

5 _ _ T
- Average of 100 iterations of 5-folds 77777 ) E i S DA E A A i I *
cross validations of experiments: T

- DS always extract 6 or 7 clusters,
so for comparison we implement
K-mean for K= 2-15

Mean Accuracy
[y )
[
—
pt

- HC vs MS: Accuracy 73.94 %

. 35
- HC vs RRMS: Accuracy 72.51% ’
30
Cluster number | 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B Geod K-mean| 60.17 | 6234  63.74 | 65.01  64.51 | 65. 65.83 | 66.69 | 66.03 | 6627 6739 | 06649 6684 | GO.67

5.00
MEucl Kmean 4711 | 50111 5250 | 5350 5410 | 5504 5413 | 53.04 5301 | 5450 5481 | 5477 5442 | 5453

TABLE 11
AVERAGE CONFUSION MATRIX OF CLASSIFICATION RESULTS FOR THE
PROPOSED MEAN GEODESIC DS CLUSTERING APPROACH AND BEST OF
GEODESIC K-MEANS CLUSTERING FOR HC vs. RRMS.

Geodesic Dominant-Set Geodesic k-means
Predicted Class Predicted Class
HC RRMS HC RRMS

Actual HC 21.68 11.32 HC 19.28 13.72
Class | RRMS | 7.92 29.08 RRMS | 10.11 26.89
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Results .

- Average of 100 iterations of 5-folds
cross validations of experiments:

- DS always extract 6 or 7 clusters,
so for comparison we implement
K-mean for K= 2-15

60

Mean Accuracy
—
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- HC vs MS: Accuracy 73.94 % 56

50

- HC vs RRMS: Accuracy 72.51%

45

Cluster number |~ 2 3 1 5 6 7 8 9 10 11 12 13 14 15
- HC vs PMS: ACCUI’ch 84.06 % B Geod K-mean| 6860 | 70.33 7231 7341 7379 7426 7430 | 7462 | 7487 | 7500 | 7491 | 7460 7500  75.01
B Eucl K-mean | 57.93 58.61 60.05 60.03 61.01 59.85 60.67 60.31 ‘ 60.20 | 60.51 60.50 59.53 9,57 60.05

- Geodesic Clustering gives superior
results and also Geodesic
Dominant-Set clustering is always
better in  performance as
compared to K-Mean clustering.

TABLE 111
AVERAGE CONFUSION MATRIX OF CLASSIFICATION RESULTS FOR THE
PROPOSED MEAN GEODESIC DS CLUSTERING APPROACH AND BEST OF
GEODESIC K-MEANS CLUSTERING FOR HC vs. PMS

Geodesic Dominant-Set Geodesic k-means
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Predicted Class Predicted Class
HC PMS HC PMS
Actual HC 26.08 6.92 HC 25.16 7.84
Class PMS 3.93 31.07 PMS 9.12 25.88
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Results

- Average of 100 iterations of 5-folds , E=Sour Experiment | | o e s
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- DS always extract 6 or 7 clusters,
so for comparison we implement
K-mean for K= 2-15
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- Geodesic Clustering gives superior
results and also Geodesic
Dominant-Set clustering is always
better in  performance as
compared to K-Mean clustering. 10 |
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- Significance of permutation test © s« ‘55Accuri‘iy B w0 s W
- HC vs MS, P_value <0.0005
HC vs RRMS, P_value <0.05

IIIII ¢+ HC vs PMS, P_value <0.0005
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Conclusion

« Neuroscientific

« Alteration in brain is helpful in discriminating between HC and patients affected with different
phenotype of MS.

« Computational
» Proper data representation allow an effective exploitation on the manifold space.

« Geodesic method-based clustering gives superior results.

+ Specific encoding of FC matrices leads to good performance in discriminating task.
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