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— Input: a video sequence of a
moving object

— Output: XYZ-coordinates of the
points

— Typical solutions involve:

1. Tracking feature points across
frames + NRSfM

2. Exploiting assumptions on
camera, shape of the object,
trajectories etc.

...lll-posed, mathematically challenging
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L A
— Motivation: Circumvent difficult mathematical Ron T ith ‘
challenges and avoid point tracking textures and lights

-

— ldea: Train a network to infer shape directly
from the video sequence...but how?

— Synthetically generate database of short
movie c_Iips of realisti_cally deforming surfaces, , T s\
and their corresponding depth maps. Synthetically generated

deforming surface Depth map
— Divide the video into patches, estimate depth, ‘

combine together
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Assumptions:

1. Static and orthographic camera (=> video depth estimation)

2. Non-negligible deformation of the object across time

3. Locally, the 4D structure of the object can be approximated with a parametric
model
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Orthographic camera:

« Easier to train than
perspective camera, but...

* PRO_B LI_EM: linear Example of generalized bas-relief ambiguity. From left
am blg uity (GB R to right, two versions of the same surface, of which the second
transformation) one is a GBR transformed version of the first one, and their

corresponding views from an orthographic camera located at
(0,0,1). The GBR. transformation changes the orientation of
the surface normals, which in turn slightly changes the albedo
pattern of the surface. However, the second image can be mis-
takenly interpreted as its non-transformed version rendered
with the same texture with slightly modulated pixel intensi-
ties.
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« Easier to train than

perspective camera, but...

VQ
« PROBLEM: linear ambiguity Z
F

Orthographic camera:

(GBR transformation)

The normalized Hessian of a depth map
z iIs a complete differential invariant to
generalized bas-relief transformations.

 Proposed solution: represent
surfaces with GBR-invariants
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Network architecture (based on 3D U-net)
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GBR-invariant loss function

Vi 1 (z zy)
||VQZHF \/Z:L‘:L‘Q T Z:l:yz T Zya:'Q + Zyy2 “yx “yy

« Each pixel of the GBR-invariant depth map has two
degrees of freedom (...can be seen as points on the
unit sphere in 3D space)

« Euclidean distance corresponds to chordal distance
between points on the sphere
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* Synthetic data

« Different motion parameters
than in training

« Comparison with two state-of-
the-art NRSfM methods
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1 Results (real data)

Kinect RGB sequence
Kinect Depth maps
CSF2

Ours
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More results...

Ground truth




Paper 2810

12

\lz

1 Quantitative results

Synthetically generated sequences

0.5907 + 0.4536 0.8746 + 0.6372 0.8738 + 0.6369

Average and standard deviation of spatially normalized MAE calculated from 1000 videos

3.7 mm 4.6 mm 4.3 mm

Average MAE calculated from two Kinect sequences



