Backdoor-Based Watermarks in Neural Networks with Limited Data

Xuankai Liu¹, Fengting Li¹, Bihan Wen², Qi Li¹

¹Tsinghua University

²Nanyang Technological University

1

Background

As training deep models usually consumes massive data and computational resources, neural networks are often seen as valuable intellectual properties.

Valuable data

Massive Computation

Background

 With the development of Machine Learning as a Service (MLaaS), the value of the model transaction market is gaining more attention.

Copyright issue in model transaction

A sold model can be illegally resold to others to reap huge profits, causing significant economic damage to the legitimate owners.

How to claim the ownership of a pretrained model?

- Watermarking technique is often applied to protect the intellectual property
- The backdoor-based watermarking is the most trendy in deployment for neural networks

Is the watermarking technique robust?

Some related works have explored removing watermarks, however:

- [1] requires the whole training set
- [2] relies on a carefully-designed learning rate schedule according to different types of watermarks

[1] Shafieinejad, Masoumeh, et al. "On the robustness of the backdoor-based watermarking in deep neural networks." *arXiv:1906.07745* (2019).
[2] Chen, Xinyun, et al. "REFIT: a Unified Watermark Removal Framework for Deep Learning Systems with Limited Data." arXiv:1911.07205 (2019).

A more realistic setting for the adversary

- Limited data: adversaries may have limited access to the original training set, e.g. 10%
- Watermark agnostic: e.g. types, shapes...
- Little impact on the model performance: an adversaries want to remove the watermarks without compromising the model performance

Our framework——WILD

We propose a generic framework WILD with the above assumptions for watermark removal, and WILD consists of two parts:

- Using occlusion to imitate the behavior of backdoor-based watermarks
- Penalize feature distribution gap between normal images and images augmented using occlusion

Data augmentation in WILD

 Backdoors can be treated as different types of occlusion

 We utilize Random Erasing^[1] to enhance the robustness against occlusion

Penalty for distribution gap in WILD

Intuition: the infused watermarks form correlated paths by convolutional kernels, and these paths are activated when watermarks appear

• To cancel out these paths, we add regularization to penalize the distribution gaps between normal images and watermarked images in the feature space

Datasets:

• MNIST, CIFAR-10

Watermark type:

Original image Content-based Noise-based Unrelated

• Content-based, Noise-based, Unrelated

Metric function:

• Cross-entropy, Jensen–Shannon divergence

Experiment Result on MNIST 1.0 1.0 - $1.0 \cdot$ 0.8 0.8 0.8 Accuracy 9.0 Accuracy 9.0 Accuracy 0.2 0.2 0.2 0.0 -0.0 0.04 5 6 7 8 9 10 2 3 20 25 0 15 30 15 $\dot{20}$ 10 10 0 Epochs Epochs Epochs MNIST, noise-based MNIST, content-based MNIST, unrelated Test accuracy:CE Watermark retention:CE Test accuracy:IS — Watermark retention: JS ----

- Content-based and noise-based watermarks can be removed within a few epochs
- Unrelated watermarks are much more difficult to remove, the main reason is that the poisonous data used comes from totally different domains

Experiment Result on CIFAR-10

 Similar to the results on MNIST, compared with content-based and noise-based watermarks, removing unrelated watermarks is relatively harder

Conclusion

- Offered a new perspective of how backdoor-based watermark forms and the way of imitating such watermarks
- Proposed WILD for watermark removal with only a small proportion of training data, which has little impact on the performance of the model
- Demonstrated that backdoor-based watermarks can be easily removed within even one epoch of tuning

Thank you!

Email: liuxk18@mails.tsinghua.edu.cn