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Background

◼ As training deep models usually consumes massive data and 

computational resources, neural networks are often seen as 

valuable intellectual properties.
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Background

◼ With the development of Machine Learning as a Service 

(MLaaS), the value of the model transaction market is 

gaining more attention.
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Copyright issue in model transaction

◼ A sold model can be illegally resold to others to reap huge 

profits, causing significant economic damage to the 

legitimate owners.
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How to claim the ownership of a pretrained model？

◼ Watermarking technique 

is often applied to protect 

the intellectual property

◼ The backdoor-based 

watermarking is the most 

trendy in deployment for 

neural networks
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Is the watermarking technique robust？

6

Model Sell Resell

Watermark

embedding
Sell

After watermark 

removal
Sell

True owner

Buyer 1

Buyer 1

Buyer 1

Buyer 2

Buyer 2

Buyer 2



Related Works
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Some related works have explored removing watermarks, however:

◼ [1] requires the whole training set

◼ [2] relies on a carefully-designed learning rate schedule 

according to different types of watermarks

[1] Shafieinejad, Masoumeh, et al. "On the robustness of the backdoor-based watermarking in deep neural networks." arXiv:1906.07745 (2019).

[2] Chen, Xinyun, et al. "REFIT: a Unified Watermark Removal Framework for Deep Learning Systems with Limited Data." arXiv:1911.07205 (2019).



A more realistic setting for the adversary
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• Limited data: adversaries may have limited access to the original 

training set, e.g. 10%

• Watermark agnostic: e.g. types, shapes… 

• Little impact on the model performance: an adversaries want to 

remove the watermarks without compromising the model 

performance



Our framework——WILD

We propose a generic framework WILD with the above 

assumptions for watermark removal, and WILD consists of two 

parts:

➢ Using occlusion to imitate the behavior of backdoor-based 

watermarks

➢ Penalize feature distribution gap between normal images and 

images augmented using occlusion
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Data augmentation in WILD
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◼ Backdoors can be treated as 

different types of occlusion

◼ We utilize Random Erasing[1] to 

enhance the robustness against 

occlusion

[1] Zhong, Zhun, et al. "Random Erasing Data Augmentation." AAAI. 2020.



Penalty for distribution gap in WILD
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◼ Intuition: the infused watermarks form correlated paths by 

convolutional kernels, and these paths are activated when 

watermarks appear

◼ To cancel out these paths, we add regularization to penalize the 

distribution gaps between normal images and watermarked 

images in the feature space



An overview of WILD
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is the distribution 

of high-level features.

is a metric function measuring the 

distance between the two distributions 

in high-level feature space.

is the loss function.



Experiment Setup

Datasets:

⚫ MNIST, CIFAR-10

Watermark type：

⚫ Content-based, Noise-based, Unrelated

Metric function:

⚫ Cross-entropy, Jensen–Shannon divergence
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Experiment Result on MNIST

MNIST, content-based MNIST, noise-based MNIST, unrelated

◼ Content-based and noise-based watermarks can be removed within a few epochs

◼ Unrelated watermarks are much more difficult to remove, the main reason is that the 

poisonous data used comes from totally different domains
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Experiment Result on CIFAR-10

CIFAR-10, content-based CIFAR-10, noise-based CIFAR-10, unrelated

◼ Similar to the results on MNIST, compared with content-based and noise-based 

watermarks, removing unrelated watermarks is relatively harder



Conclusion

• Offered a new perspective of how backdoor-based watermark 

forms and the way of imitating such watermarks

• Proposed WILD for watermark removal with only a small 

proportion of training data, which has little impact on the 

performance of the model

• Demonstrated that backdoor-based watermarks can be easily 

removed within even one epoch of tuning
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Thank you!

Email: liuxk18@mails.tsinghua.edu.cn
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