Directionally Paired Principal Component Analysis for Bivariate Estimation Problems

Yifei Fan, ${ }^{1}$ Navdeep Dahiya, ${ }^{1}$ Samuel Bignardi, ${ }^{1}$ Romeil Sandhu, ${ }^{2}$ and Anthony Yezzi ${ }^{1}$
${ }^{1}$ School of Electrical and Computer Engineering, Georgia Institute of Technology
${ }^{2}$ Computer Science Department, Stony Brook University

Contributions

- Propose Directionally Paired Principal Component Analysis (DP-PCA): optimal linear model for estimating coupled yet partially observable variables
- Directly minimizes prediction errors rather than maximizing cov/corr
- Lower prediction errors compared to existing linear cross-decomposition methods (PLS/CCA [1, 2])
[1] J. A. Wegelin et al., "A survey of partial least squares (pls) methods, with emphasis on the two-block case," University of Washington, Tech. Rep, 2000.
[2] H.Hotelling,"Relations between two sets of variates." Biometrika, vol. 28, no. 3/4, pp. 321-377, 1936.

Dimension reduction and PCA

- Complexity in raw data

Dimension of useful feature < dimension of data

- PCA: single-variable set
- Maximize variance

$$
\mathbf{w}_{(1)}=\arg \max \left\{\frac{\mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}}\right\}
$$

- Minimize reconstruction error

$$
\varepsilon(A, U)=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-U \mathbf{a}_{n}\right\|^{2}
$$

PCA of a multivariate Gaussian distribution.
(source: Wikipedia)

Objective: coupled, partially observable data

- Training

$$
\left[\begin{array}{ccc}
x_{1,1}^{\text {train }} & & x_{1, N}^{\text {train }} \\
\vdots & \ldots & \vdots \\
x_{M_{1}, 1}^{\text {train }} & & x_{M 1}^{\text {train }} \\
\hdashline y_{1,1}^{\text {train }} & & y_{1, N}^{\text {train }} \\
\vdots & \cdots & \vdots \\
y_{M_{2}, 1}^{\text {train }} & & y_{M_{2}, N}^{\text {train }}
\end{array}\right] \xrightarrow[\text { reduction }]{\text { dimension }}\left[\begin{array}{ccc}
a_{1,1}^{\text {train }} & \cdots & a_{1, N}^{\text {train }} \\
\vdots & \ddots & \vdots \\
a_{L, 1}^{\text {train }} & \cdots & a_{L, N}^{\text {train }}
\end{array}\right]
$$

- Testing

$$
\left.\begin{array}{c}
{[\mathbf{x}]_{M_{1} \times N}^{\text {test }} N} \\
\underset{V}{U}
\end{array}\right\} \xrightarrow{\text { reduction }}\left[\begin{array} { l }
{ \text { dimension } } \\
{ \mathbf { a }] _ { L \times N } ^ { \text { test } } }
\end{array} \xrightarrow { \text { transform } } \left[\begin{array}{l}
\text { inverse }
\end{array}\left[\begin{array}{l}
{[\hat{\mathbf{x}}]_{M_{1} \times N}^{\text {test }}} \\
{[\hat{\mathbf{y}}]_{M_{2} \times N}^{\text {test }}}
\end{array}\right]\right.\right.
$$

Proposed DP-PCA

- Least squares formulation

$$
\varepsilon_{Y}(U, V)=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbf{y}_{n}-V U^{T} \mathbf{x}_{n}\right\|^{2}
$$

- Optimality conditions

$$
\left\{\begin{array}{l}
X X^{T} U=X Y^{T} V\left(V^{T} V\right)^{-1} \\
V=Y X^{T} U\left(U^{T} X X^{T} U\right)^{-1}
\end{array}\right.
$$

(Derivation in Section II.)

- Solution steps

1. Solve eigenvalue problem on the $N \times N$ matrix $Y Y^{T}: Y^{T} Y Z=Z D$
2. Solve $X^{T} U=Z$ for U. (Z with size $N \times L$ contains L eigenvectors.)
3. Plug in optimality condition for V
(DC-PCA: obtain U via PCA on X. Concurrent work [3].)
[3] N. Dahiya, Y. Fan, S. Bignardi, R. Sandhu, and A. Yezzi, "Dependently Coupled Principal Component Analysis for Bivariate Inversion Problems," 2020 25th International Conference on Pattern Recognition. IEEE, 2020.

Comparison with related approaches

$\mathbf{U}, \mathbf{V}, \mathbf{W}, \mathbf{C} \leftarrow \operatorname{eig}\left(S_{\mathbf{X Y}}\right)$
$\underset{\mathbf{X}}{\mathbf{X}_{\text {rot }}} \mathbf{U} \underset{\mathbf{C}}{\mathbf{V}} \underset{\mathbf{Y}}{\mathbf{V}}$
$\xrightarrow{\because \because \because \because \because \ddots} \underset{\mathbb{R}^{L}}{ }$

Partial Least Square Regression (PLSR)

- Paired loadings \mathbf{P}, \mathbf{Q} and weights \mathbf{W}, \mathbf{C} by maximizing covariance of standardized data
- Regression in subspaces

$$
\mathbf{U} \leftarrow \operatorname{eig}\left(S_{\mathbf{X X}}\right)
$$

Canonical Regression (CR)

- Paired orthonormal bases \mathbf{U}, \mathbf{V} by max variance of standardized data
- Regression and maximizing covariance terms in subspaces

Proposed DP-PCA

- Orthonormal basis U for X by maximizing variance
- Paired basis V for Y by minimizing reconstruction erryr under shared coefficient $\mathbf{a}_{n}^{*}\left[V^{2}\right)$)

Comparison on storage requirement

Method
 Results to be stored after training

Joint PCA $\quad \bar{X}, \bar{Y}$: mean values of training data (with size M_{1} and M_{2});
U, V : bases for X and Y (with size $M_{1} \times L$ and $M_{2} \times L$).
\bar{X}, \bar{Y} : mean values of training data (with size M_{1} and M_{2});
σ_{X}, σ_{Y} : standard deviation of training data (with size M_{1} and M_{2});
PLSR $\quad \mathbf{P}, \mathbf{X}_{\text {rotations }}$: loadings and rotations for \mathbf{X} (two matrices both with size $M_{1} \times L$);
Either (1) $\boldsymbol{\beta}$: regression coefficient for predicting \mathbf{Y} from \mathbf{X} (with size $M_{2} \times M_{1}$) or (2) \mathbf{R} :
regression matrix between \mathbf{A} and \mathbf{B} (with size $L \times L$), \mathbf{Q} : loadings for \mathbf{Y} (with size $M_{2} \times L$).
\bar{X}, \bar{Y} : mean values of training data (with size M_{1} and M_{2});
σ_{X}, σ_{Y} : standard deviation of training data (with size M_{1} and M_{2});
CR
\mathbf{U}, \mathbf{V} : loadings for X and Y (with size $M_{1} \times L$ and $M_{2} \times L$)
$\overline{\mathbf{A}}, \overline{\mathbf{B}}$: mean values in the subspace (with size L)
$\sigma_{\mathbf{A}}, \sigma_{\mathbf{B}}$: standard deviation in the subspace (with size L)
$\boldsymbol{\beta}$: correlation coefficient between \mathbf{U} and \mathbf{V} (with size $L \times L$)

DP-PCA Same as those in Joint PCA

Evaluation via reconstruction and prediction

Experiment result: synthetic data

- Multivariate Gaussian distribution w/ random mean and covariance

(a) Reconstruction error on observable $X_{\text {test }}$

(b) Prediction error on unobservable $Y_{\text {test }}$

Independent: lower bound, best possible

Joint PCA: worst as $Y_{\text {test }}$ unobservable

CR: sub-optimal for both $X_{\text {test }}$ and $Y_{\text {test }}$

PLSR: sacrificing $X_{\text {test }}$ for better $Y_{\text {test }}$

DC-PCA: best $X_{\text {test }}$ and total, descent $Y_{\text {test }}$

Best combination: PCA for $X_{\text {test }}$, and optimal Y mode of DP-PCA for $Y_{\text {test }}$

Execution time

- Experience with publicly available implementations

(a) Execution time for 100 runs

$$
\left(M_{1}=M_{2}=128, L=32\right)
$$

(b) Training time for 100 runs ($M_{1}=M_{2}=128, L=1$ to 32)

Joint PCA: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
PLSR: https://scikit-learn.org/stable/modules/generated/sklearn.cross decomposition.PLSRegression.html

Experiment result: multi-target regression

Experiment result: single-channel images

Sequential split: according to the sequence of indices (i.e., top vs bottom) Random split: randomly yet consistently across images

DP-PCA: for random split, achieve best results on all three under the budget of a single-pair bases.

Conclusions

- Best (combined) estimation of coupled yet partially observable data:
- Standard PCA for the observable part X
- Optimal Y mode of DP-PCA for the unobservable part Y
- More storage requirement (two pairs of bases) and longer computation time
- DC-PCA: best single approach for overall estimation
- Suitable when the unobservable are no more important than the observable
- Lowest storage requirement and fast speed

