

Directionally Paired Principal Component Analysis for Bivariate Estimation Problems

<u>Yifei Fan</u>,¹ Navdeep Dahiya,¹ Samuel Bignardi,¹ Romeil Sandhu,² and Anthony Yezzi¹

¹School of Electrical and Computer Engineering, Georgia Institute of Technology ²Computer Science Department, Stony Brook University

Contributions

- Propose Directionally Paired Principal Component Analysis (DP-PCA): optimal linear model for estimating coupled yet partially observable variables
 - Directly minimizes prediction errors rather than maximizing cov/corr
 - Lower prediction errors compared to existing linear cross-decomposition methods (PLS/CCA [1, 2])

[1] J. A. Wegelin et al., "A survey of partial least squares (pls) methods, with emphasis on the two-block case," University of Washington, Tech. Rep, 2000.
[2] H.Hotelling, "Relations between two sets of variates." Biometrika, vol. 28, no. 3/4, pp. 321–377, 1936.

 Propose Directionally Pained Principal Component Analysis (DP-AC4): optimal linear model for extinnaling coupled jet partially observable variables
 Directy initiatis predictor errors rather than maximizing conform Linear predictor errors compared to acting linear cross-decompasion methods (PS/OCA)(1, 2)

Dimension reduction and PCA

- Complexity in raw data
 Dimension of useful feature < dimension of data
- PCA: single-variable set
 - Maximize variance

$$\mathbf{w}_{(1)} = \arg \max \left\{ \frac{\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}}{\mathbf{w}^T \mathbf{w}} \right\}$$

• Minimize reconstruction error

$$\varepsilon(A, U) = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - U\mathbf{a}_n||^2$$

PCA of a multivariate Gaussian distribution. (source: Wikipedia)

Objective: coupled, partially observable data

• Training

Testing

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{M_1 \times N}^{\text{test}} \xrightarrow[\text{reduction}]{}^{\text{test}} \begin{bmatrix} \mathbf{a} \end{bmatrix}_{L \times N}^{\text{test}} \xrightarrow[\text{transform}]{}^{\text{inverse}} \begin{bmatrix} [\mathbf{\hat{x}}]_{M_1 \times N}^{\text{test}} \\ [\mathbf{\hat{y}}]_{M_2 \times N}^{\text{test}} \end{bmatrix}$$

Proposed DP-PCA

Least squares formulation

$$\varepsilon_Y(U, V) = \frac{1}{N} \sum_{n=1}^N ||\mathbf{y}_n - V U^T \mathbf{x}_n||^2$$

• Optimality conditions $\begin{cases}
XX^TU = XY^TV(V^TV)^{-1} \\
V = YX^TU(U^TXX^TU)^{-1}
\end{cases}$

(Derivation in Section II.)

• Solution steps

- 1. Solve eigenvalue problem on the $N \times N$ matrix YY^T : $Y^TYZ = ZD$
- 2. Solve $X^T U = Z$ for U. (Z with size $N \times L$ contains L eigenvectors.)
- 3. Plug in optimality condition for V

(DC-PCA: obtain U via PCA on X. Concurrent work [3].)

[3] N. Dahiya, Y. Fan, S. Bignardi, R. Sandhu, and A. Yezzi, "Dependently Coupled Principal Component Analysis for Bivariate Inversion Problems," 2020 25th International Conference on Pattern Recognition. IEEE, 2020.

Comparison with related approaches

Partial Least Square Regression (PLSR)

- Paired loadings P, Q and weights W, C by maximizing covariance of standardized data
- Regression in subspaces

Canonical Regression (CR)

- Paired orthonormal bases U, V by max variance of standardized data
- Regression and maximizing covariance terms in subspaces

Proposed DP-PCA

- Orthonormal basis *U* for *X* by maximizing variance
- Paired basis V for Y by minimizing reconstruction error under shared coefficient \mathbf{a}_n^*

Comparison on storage requirement

Method	Results to be stored after training
Joint PCA	\overline{X} , \overline{Y} : mean values of training data (with size M_1 and M_2); U, V : bases for X and Y (with size $M_1 \times L$ and $M_2 \times L$).
PLSR	$\overline{X}, \overline{Y}$: mean values of training data (with size M_1 and M_2); σ_X, σ_Y : standard deviation of training data (with size M_1 and M_2); $\mathbf{P}, \mathbf{X}_{rotations}$: loadings and rotations for \mathbf{X} (two matrices both with size $M_1 \times L$); Either (1) $\boldsymbol{\beta}$: regression coefficient for predicting \mathbf{Y} from \mathbf{X} (with size $M_2 \times M_1$) or (2) \mathbf{R} : regression matrix between \mathbf{A} and \mathbf{B} (with size $L \times L$), \mathbf{Q} : loadings for \mathbf{Y} (with size $M_2 \times L$).
CR	\overline{X} , \overline{Y} : mean values of training data (with size M_1 and M_2); σ_X , σ_Y : standard deviation of training data (with size M_1 and M_2); U , V : loadings for X and Y (with size $M_1 \times L$ and $M_2 \times L$) \overline{A} , \overline{B} : mean values in the subspace (with size L) σ_A , σ_B : standard deviation in the subspace (with size L) β : correlation coefficient between U and V (with size $L \times L$)
DP-PCA	Same as those in Joint PCA

Evaluation via reconstruction and prediction

Experiment result: synthetic data

• Multivariate Gaussian distribution w/ random mean and covariance

Independent: lower bound, best possible Joint PCA: worst as Y_{test} unobservable CR: sub-optimal for both X_{test} and Y_{test} PLSR: sacrificing X_{test} for better Y_{test} DC-PCA: best X_{test} and total, descent Y_{test} Best combination: PCA for X_{test} and

Figure 6.5: Evaluation on dimension reduction via data reconstruction and prediction of coupled synthetic data. $N = 10^4$, $M_1 = M_2 = 128$, L = 1 to 32. Horizontal axis: dimension L of the target subspace (i.e., budget); vertical axis: reconstruction/prediction error.

Best combination: PCA for X_{test} , and optimal Y mode of DP-PCA for Y_{test}

Execution time

• Experience with publicly available implementations

PLSR: <u>https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html</u> CR (R): <u>https://rdrr.io/github/jmhewitt/telefit/man/cca.predict.html</u> CR (Python): <u>https://gist.github.com/thelittlekid/89630241f5b90a838a7b583a5836d350</u>

Experiment result: multi-target regression

11

Experiment result: single-channel images

Sequential split: according to the sequence of indices (i.e., top vs bottom) Random split: randomly yet consistently across images

DP-PCA: for random split, achieve best results on all three under the budget of a single-pair bases.

Conclusions

- Best (combined) estimation of coupled yet partially observable data:
 - Standard PCA for the observable part X
 - Optimal Y mode of DP-PCA for the unobservable part Y
 - More storage requirement (two pairs of bases) and longer computation time
- DC-PCA: best single approach for overall estimation
 - Suitable when the unobservable are no more important than the observable
 - Lowest storage requirement and fast speed