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Contributions

• Propose Directionally Paired Principal Component Analysis (DP-PCA): 
optimal linear model for estimating coupled yet partially observable 
variables
• Directly minimizes prediction errors rather than maximizing cov/corr
• Lower prediction errors compared to existing linear cross-decomposition 

methods (PLS/CCA [1, 2])

[1] J. A. Wegelin et al., “A survey of partial least squares (pls) methods, with emphasis on the two-block case,” University of Washington, Tech. Rep, 2000. 
[2] H.Hotelling,“Relations between two sets of variates.” Biometrika, vol. 28, no. 3/4, pp. 321–377, 1936. 
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Dimension reduction and PCA

• Complexity in raw data
Dimension of useful feature < dimension of data

• PCA: single-variable set
• Maximize variance
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• Minimize reconstruction error
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PCA of a multivariate Gaussian distribution. 
(source: Wikipedia)



Objective: coupled, partially observable data

• Training

• Testing
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Proposed DP-PCA

• Least squares formulation
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• Optimality conditions 
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(Derivation in Section II.)

• Solution steps
1. Solve eigenvalue problem on the 

𝑁×𝑁 matrix 𝑌𝑌!: 𝑌!𝑌𝑍 = 𝑍𝐷
2. Solve 𝑋!𝑈 = 𝑍 for 𝑈. (𝑍 with size 

𝑁×𝐿 contains 𝐿 eigenvectors.)
3. Plug in optimality condition for 𝑉

(DC-PCA: obtain 𝑈 via PCA on 𝑋. 
Concurrent work [3].)
[3] N. Dahiya, Y. Fan, S. Bignardi, R. Sandhu, and A. Yezzi, “Dependently 
Coupled Principal Component Analysis for Bivariate Inversion Problems,” 
2020 25th International Conference on Pattern Recognition. IEEE, 2020.
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Comparison with related approaches
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Partial Least Square Regression
(PLSR)

• Paired loadings 𝐏, 𝐐 and
weights 𝐖,𝐂 by maximizing 
covariance of standardized data

• Regression in subspaces

Canonical Regression (CR)

• Paired orthonormal bases 𝐔, 𝐕 by 
max variance of standardized data

• Regression and maximizing 
covariance terms in subspaces

Proposed DP-PCA
• Orthonormal basis 𝑈 for 𝑋 by 

maximizing variance
• Paired basis 𝑉 for 𝑌 by 

minimizing reconstruction error 
under shared coefficient 𝐚!∗

(a) Joint PCA (b) Canonical Regression (CR)

(c) Partial Least Square Regression (PLSR) (d) proposed APCCA

Figure 6.1: Comparison on correlation analysis in related approaches.

is performed between the scores (Figure 6.1c). Finally in the proposed APCCA, correla-

tion between X and Y is maximized by sharing the expansion coe�cient A in the lower-

dimensional subspace (Figure 6.1d).

Conditional PCA

The proposed APCCA approach may also be viewed in a conditional Bayesian context

with caveats. The paired basis V for Y is conditioned on the basis U which is computed

independently on measurement X. In other words, the paired basis V is computed depen-

dently on Y and U. Such an additional consideration and dependency is a key discerning

element between our proposed APCCA to that of classical conditional PCA. For example,

previous work adopting the moniker of conditional PCA focuses on exploiting a PCA basis
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Comparison on storage requirement

Method Results to be stored after training

Joint PCA
3𝑋, 3𝑌: mean values of training data (with size 𝑀# and 𝑀$);
𝑈, 𝑉: bases for 𝑋 and 𝑌 (with size 𝑀#× 𝐿 and 𝑀$ × 𝐿) .

PLSR

3𝑋, 3𝑌: mean values of training data (with size 𝑀# and 𝑀$);
𝜎%, 𝜎&: standard deviation of training data (with size 𝑀# and 𝑀$);
𝐏, 𝐗'()*)+(,-: loadings and rotations for 𝐗 (two matrices both with size 𝑀#× 𝐿);
Either (1) 𝛃: regression coefficient for predicPng 𝐘 from 𝐗 (with size 𝑀$ ×𝑀#) or (2) 𝐑:
regression matrix between 𝐀 and 𝐁 (with size 𝐿 × 𝐿), 𝐐: loadings for 𝐘 (with size 𝑀$× 𝐿).

CR

3𝑋, 3𝑌: mean values of training data (with size 𝑀# and 𝑀$);
𝜎%, 𝜎&: standard deviation of training data (with size 𝑀# and 𝑀$);
𝐔, 𝐕: loadings for 𝑋 and 𝑌 (with size 𝑀#× 𝐿 and 𝑀$× 𝐿)
>𝐀, >𝐁 : mean values in the subspace (with size 𝐿)
𝜎𝐀, 𝜎𝐁: standard deviation in the subspace (with size 𝐿)
𝛃: correlation coefficient between 𝐔 and 𝐕 (with size 𝐿 × 𝐿)

DP-PCA Same as those in Joint PCA
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Evaluation via reconstruction and prediction
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Experiment result: synthetic data

• Multivariate Gaussian distribution w/ random mean and covariance
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Independent: lower bound, best possible

Joint PCA: worst as 𝑌)0-) unobservable

CR: sub-optimal for both 𝑋)0-) and 𝑌)0-)

PLSR: sacrificing 𝑋)0-) for better 𝑌)0-)

DC-PCA: best 𝑋)0-) and total, descent 𝑌)0-)

Best combination: PCA for 𝑋)0-), and 
optimal Y mode of DP-PCA for 𝑌)0-)

(a) Reconstruction error on
observable Xtest

(b) Prediction error on
unobservable Ytest

(c) Total reconstruction error

Figure 6.5: Evaluation on dimension reduction via data reconstruction and prediction of
coupled synthetic data. N = 104, M1 = M2 = 128, L = 1 to 32. Horizontal axis: dimension
L of the target subspace (i.e., budget); vertical axis: reconstruction/prediction error.

problems. For demonstration of the proposed Asymmetric PCA in those applications, we

refer readers to the parallel research in our lab. For the rest of this section, we shift our focus

from inversion problems to prediction problems that are often encountered in statistical

analysis.

6.5.4 Experiments in the Prediction Scenario

Despite its origin from a use case of the inversion problem, Asymmetric PCA is also ap-

plicable to prediction problems and beats the existing linear approaches. In this section,

we switch to the prediction scenario by assuming that the high-dimensional measurements

X of the observable part are accessible at test time. Correspondingly, the reconstructed

signal of the observable measurement X̂test is calculated by taking the (forward) transform

and then the inverse transform of a dimension reduction approach. The prediction of the

unobservable part Ytest remains the same as that described in Chapter 6.5.1.

Figure 6.5 illustrates the reconstruction and prediction errors on the synthetic multi-

variate Gaussian data using involved approaches. During training, joint PCA shares the

budget on the dimension of the subspace L and between the observable part X and unob-

servable part Y . Consequently, the principal components of X is no longer optimal and

the e↵ort spent on Y is wasted because Y becomes unobservable at test time. Such results
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Execution time

• Experience with publicly available implementations
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(a) Execution time for 100 runs
(M1 = M2 = 128, L = 32)

(b) Training time for 100 runs
(M1 = M2 = 128, L = 1 to 32)

Figure 6.3: Comparison on execution time on reconstructing and predicting synthetic data.

16GB DDR4 RAM @ 2133MHz. In a strict sense, the reported execution time does not

necessarily demonstrate the time complexity of the approaches because they are not opti-

mized in a uniform manner. Instead, the chart in Figure 6.3a reflects the experience with

popular implementations that are publicly available. According to the chart, the required

training time for PLSR is substantially longer than others. In addition, as illustrated by

Figure 6.3b, the training time in PLSR also increases significantly as the budget (i.e., di-

mension of the target subspaces) increases. As for the testing time, all approaches have

testing time fluctuated within a small range. We also compare the execution time for CR

between the original R implementation and our translated version7 in Python, and find out

that the Python version is about 5 times faster. In sum, considering the overall performance

illustrated in Figure 6.2c and Figure 6.3a, we observe that the proposed APCCA achieves

lowest errors with comparably fast speed.

6.4.3 Experiments on Real Data

As discussed at the beginning of Chapter 6.4.1, predicting the values of observable vari-

ables Y can be formulated as a multi-target regression problem. In this subsection, we

conduct experiments on several multi-target regression datasets that contain real data. In
7
https://gist.github.com/thelittlekid/89630241f5b90a838a7b583a5836d350
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Joint PCA: https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
PLSR: https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
CR (R): https://rdrr.io/github/jmhewitt/telefit/man/cca.predict.html
CR (Python): https://gist.github.com/thelittlekid/89630241f5b90a838a7b583a5836d350

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html
https://rdrr.io/github/jmhewitt/telefit/man/cca.predict.html
https://gist.github.com/thelittlekid/89630241f5b90a838a7b583a5836d350


Experiment result: multi-target regression

oes10 ose97 scm1d scm20d
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Experiment result: single-channel images

MNIST: sequential split MNIST: random split
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Sequential split: according to the 
sequence of indices (i.e., top vs bottom)
Random split: randomly yet consistently 
across images

DP-PCA: for random split, achieve best 
results on all three under the budget of 
a single-pair bases. 



Conclusions

• Best (combined) estimation of coupled yet partially observable data:
• Standard PCA for the observable part X
• Optimal Y mode of DP-PCA for the unobservable part Y

• More storage requirement (two pairs of bases) and longer computation time

• DC-PCA: best single approach for overall estimation
• Suitable when the unobservable are no more important than the observable
• Lowest storage requirement and fast speed
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