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Introduction
•Assist-CKD used by hospitals in England and Wales

• Used 1 hour per week by 2 operators
• Based on Clinical Judgement

•Variables
• eGFR – estimated Glomerular Filtration rate.
• Age
• Gender
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Challenges
Data is very sparse with blood test sampling frequency very low

Irregularly sampled data

The data is temporal data
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Feature Extraction Method
Construct feature matrix that can be used by 
classification algorithms
 Use linear interpolation between readings
 Align readings to latest or earliest reading
 Age and Sex variables concatenated to feature 

matrix
 Sex is converted to a numerical code M = 0, Female = 1
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Imputation by linear interpolation.  Aligned to latest reading.



Feature Extraction Method
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Classification Algorithms
Logistic Regression

Artificial Neural Network

Support Vector Machine
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Results: Best Classification Model 
Descriptions
# Classifier and Feature Set Description Date 

Algin

1 SVM(LK) matrix of interpolated eGFR at equal chronological time intervals,  interpolation by value between 2 real readings, including age L

2 SVM(LK) matrix of interpolated eGFR at equal chronological time intervals,  interpolation by value between 2 real readings, including age and sex L

3 ANN (1024,256,2) matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including 
age

L

4 LogReg matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including age L

5 LogReg matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including age and sex L

6 ANN (1024,256,2) matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings L

7 LogReg matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings L

8 ANN (512,64,2) matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including sex L

9 LogReg matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including sex L

10 ANN (512,64,2) matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings L
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Results: k-Fold x-Validation
Model # Avg Training Time (s) Avg Overall Accuracy Avg Sensitivity Avg Specificity

1 1.95 90.64% 81.40% 93.37%
2 1.94 89.54% 91.86% 88.83%
3 37.48 89.11% 72.09% 94.07%
4 1.43 88.01% 88.95% 87.61%
5 1.38 87.96% 88.37% 87.78%
6 21.8 87.64% 87.79% 87.61%
7 1.32 87.53% 88.95% 87.09%
8 18.49 87.34% 86.63% 87.43%
9 1.47 87.18% 88.95% 86.74%

10 22.45 86.91% 81.98% 88.31%
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Results: Bootstrap Testing
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Model # Avg Training Time (s) Avg Overall Accuracy Avg Sensitivity Avg Specificity

5 6.47 88.48% 86.67% 89.02%
9 6.71 88.14% 86.50% 88.63%
4 6.42 88.09% 86.03% 88.71%
7 6.5 88.05% 86.08% 88.64%
8 48.21 87.12% 88.36% 86.74%
6 31.93 86.94% 89.01% 86.31%

10 15.21 86.60% 89.74% 85.65%
3 15.69 86.61% 89.30% 85.81%
1 0.4 85.29% 85.51% 85.23%
2 0.39 84.78% 80.29% 86.14%



Results: Summary
We are able to achieve an overall accuracy of 

 88.48% using logistic regression, 

 87.12% using Artificial Neural Network and

 85.29% using Support Vector Machine. 

ANNs performed with the highest sensitivity at 89.74% compared to 86.67% for logistic regression and 
85.51% for SVM.
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Conclusions
Support Vector Machines didn’t perform consistently in this application

Logistic regression performed the most consistently
and gave the best overall results under more rigorous bootstrap testing

Artificial Neural Networks performed with the highest sensitivity.
This is a very desirable property for use in a clinical setting.
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Future Work
Enhanced Feature Extraction:

Search for ideal imputation time interval

Experiment with Convolutional Neural Networks

Test with more data
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QUESTIONS?
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