Using Machine Learning to Refer Patients with Chronic Kidney Disease to Secondary Care

Lee Au-Yeung¹, Xianghua Xie², James Chess^{3,4}, Timothy Scale^{3,4}

¹Swansea University Medical School, ²Department of Computer Science, Swansea University, ³Swansea Bay Local Health Board, ⁴Wales Kidney Research Unit

Introduction

- •Assist-CKD used by hospitals in England and Wales
 - Used 1 hour per week by 2 operators
 - Based on Clinical Judgement
- •Variables
 - eGFR estimated Glomerular Filtration rate.
 - Age
 - Gender

Challenges

Data is very sparse with blood test sampling frequency very low

- Irregularly sampled data
- The data is temporal data

Feature Extraction Method

- Construct feature matrix that can be used by classification algorithms
 - Use linear interpolation between readings
 - Align readings to latest or earliest reading
 - Age and Sex variables concatenated to feature matrix
 - Sex is converted to a numerical code M = 0, Female = 1

Imputation by linear interpolation. Aligned to latest reading.

Feature Extraction Method

Classification Algorithms

- Logistic Regression
- Artificial Neural Network
- Support Vector Machine

Results: Best Classification Model Descriptions

#	Classifier and Feature Set Description	Date Algin
1	SVM(LK) matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including age	L
2	SVM(LK) matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including age and sex	L
3	ANN (1024,256,2) matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including age	L
4	LogReg matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including age	L
5	LogReg matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including age and sex	L
6	ANN (1024,256,2) matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings	L
7	LogReg matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings	L
8	ANN (512,64,2) matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including sex	L
9	LogReg matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings, including sex	L
10	ANN (512,64,2) matrix of interpolated eGFR at equal chronological time intervals, interpolation by value between 2 real readings	L

Results: k-Fold x-Validation

Model #	Avg Training Time (s)	Avg Overall Accuracy	Avg Sensitivity	Avg Specificity
1	1.95	90.64%	81.40%	93.37%
2	1.94	89.54%	91.86%	88.83%
3	37.48	89.11%	72.09%	94.07%
4	1.43	88.01%	88.95%	87.61%
5	1.38	87.96%	88.37%	87.78%
6	21.8	87.64%	87.79%	87.61%
7	1.32	87.53%	88.95%	87.09%
8	18.49	87.34%	86.63%	87.43%
9	1.47	87.18%	88.95%	86.74%
10	22.45	86.91%	81.98%	88.31%

Results: Bootstrap Testing

Model #	Avg Training Time (s)	Avg Overall Accuracy	Avg Sensitivity	Avg Specificity
5	6.47	88.48%	86.67%	89.02%
9	6.71	88.14%	86.50%	88.63%
4	6.42	88.09%	86.03%	88.71%
7	6.5	88.05%	86.08%	88.64%
8	48.21	87.12%	88.36%	86.74%
6	31.93	86.94%	89.01%	86.31%
10	15.21	86.60%	89.74%	85.65%
3	15.69	86.61%	89.30%	85.81%
1	0.4	85.29%	85.51%	85.23%
2	0.39	84.78%	80.29%	86.14%

Results: Summary

We are able to achieve an overall accuracy of

- 88.48% using logistic regression,
- 87.12% using Artificial Neural Network and
- 85.29% using Support Vector Machine.

ANNs performed with the highest sensitivity at 89.74% compared to 86.67% for logistic regression and 85.51% for SVM.

Conclusions

Support Vector Machines didn't perform consistently in this application

- Logistic regression performed the most consistently and gave the best overall results under more rigorous bootstrap testing
- Artificial Neural Networks performed with the highest sensitivity. This is a very desirable property for use in a clinical setting.

Future Work

Enhanced Feature Extraction:

- Search for ideal imputation time interval
- Experiment with Convolutional Neural Networks
- Test with more data

Acknowledgements

Special thanks to:

- 1. Dr Timothy Scale
- 2. Dr James Chess

Uned Ymchwil Arennol Cymru Wales Kidney Research Unit

References

[1] K. J. et. al., "Prevalence and management of chronic kidney disease in primary care patients in the uk,"

https://www.ncbi.nlm.nih.gov/pubmed/24852335, 2014.

[2] H. P. et. al., "Diagnosis of chronic kidney disease based on support vector machine by feature selection methods,"

https://www.ncbi.nlm.nih.gov/pubmed/28243816, 2017.

[3] M. D. et. al., "Patient classification and outcome prediction in iga nephropathy,"

https://www.ncbi.nlm.nih.gov/pubmed/26453758, 2015. [4] J. N. et. al., "Predicting renal failure progression in chronic kidney disease using integrated intelligent fuzzy expert system,"

https://www.hindawi.com/journals/cmmm/2016/6080814/ab s/, 2016.

[5] K. J. et. al., "Machine-learning approaches to assist in accurate and extensive chronic kidney disease screening," http://www.ijcea.com/machine-learning-approaches-assistaccurateextensive-chronic-kidney-disease-screening/, September 2017. [6] C. M. Bishop, "Pattern recognition and machine learning," 2006.

[7] B. Z. Riccardo Bellazzi, "Predictive data mining in clinical medicine: Current issues and guidelines,"

https://www.ncbi.nlm.nih.gov/pubmed/17188928, 2008.

[8] T. D. N. et. al., "An end stage kidney disease predictor based on an artificial neural networks ensemble."

https://www.sciencedirect.com/science/article/pii/S09574174 13000778, 2013.

[9] W. G. Baxt, "Application of artificial neural networks to clinical medicine,"

https://www.ncbi.nlm.nih.gov/pubmed/7475607, 1995. [10] R. P. Lippmann, "An introduction to computing with neural nets."

https://ieeexplore.ieee.org/abstract/document/1165576, 1987, [Online; accessed 28/09/2019].

2

QUESTIONS?