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Introduction

Early diagnosis of brain tumors is important in clinical diagnosis and
treatment planning1.
Multi-modal images can provide the complimentary information to
improve the segmentation accuracy.

Figure: Example of data from a training subject. From left to right: FLAIR, T1c,
T1, T2 images, and the ground truth labels. Red: Necrotic and Non-enhancing
tumor, yellow: edema, green: enhancing tumor, black: healthy tissue and
background.

1Tongxue Zhou, Su Ruan, and Stéphane Canu. “A review: Deep learning for medical
image segmentation using multi-modality fusion”. In: Array (2019), p. 100004.
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Introduction

Motivation: A strong correlation between multi MR modalities2, since
the same scene is observed by different modalities.
Our proposal: A novel correlation constraint block to discover the
latent multi-source correlation and help the segmentation.

(a) (b) (c) (d) (e) (f)

Figure: Joint intensity distributions of MR images: (a) T1-FLAIR, (b) T1-T1c,(c)
T1-T2, (d) FLAIR-T1c, (e) FLAIR-T2, (f) T1c-T2. The intensity of the first
modality is read on abscissa axis and that of the second modality on the ordinate
axis.

2Jerome Lapuyade-Lahorgue, Jing-Hao Xue, and Su Ruan. “Segmenting multi-source
images using hidden Markov fields with copula-based multivariate statistical
distributions”. In: IEEE Transactions on Image Processing 26.7 (2017), pp. 3187–3195.
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Proposed Network Architecture

Figure: The pipeline of the proposed method, consisting of feature extraction,
correlation constrain and fusion block, 4 color circles represent 4 modality feature
representations.
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Detailed Network Architecture

Figure: Overview of our proposed segmentation network framework.
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Modeling the Multi-source Correlation
LC block: to discover the latent correlation.
Correlation constraint loss (KL based): to constrain the correlation
between modalities.
Equation 1: Fj(Xj |θj) = αi � Zi(Xi |θi) + βi , (i 6= j)

Figure: Architecture of Correlation Constrain (CC) block.
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Dual Attention Fusion Block

Dual Attention Fusion Block: modality attention module and spatial
attention module3.
To weight the feature representations of the four modalities based on
their contributions to the final segmentation.

Figure: The architecture of the proposed dual attention fusion block.

3Abhijit Guha Roy, Nassir Navab, and Christian Wachinger. “Concurrent spatial and
channel ‘squeeze & excitation’in fully convolutional networks”. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. Springer.
2018, pp. 421–429.
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Implementation Details

Dataset: BraTS2018
285 training data
T1, FLAIR, T1c and T2
Whole Tumor, Tumor Core and Enhancing Tumor

Pre-processing
Crop and resize: 240× 240× 155 to 128× 128× 128
Bias Field Correction: correct the distortion of MRI data
Intensity Normalization

Loss function
Ltotal = Ldice + 0.1Lcorrelation.
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Quantitative Results

Table: Evaluation of our proposed method on Brats 2018 training dataset, (1)
Baseline (2) Baseline + Dual attention fusion (3) Baseline + Dual attention
fusion + Correlation constrain, ET, WT, TC denote enhancing tumor, whole
tumor and tumor core, respectively.

Methods Dice Score Hausdorff Distance
ET WT TC ET WT TC

(1) 0.726 0.867 0.764 8.743 8.463 9.482
(2) 0.733 0.879 0.765 8.003 7.813 9.153
(3) 0.747 0.886 0.776 7.851 7.345 9.016
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Qualitative Results

Figure: Visualization of the segmentation results. (a) Baseline (b) Baseline with
fusion block (c) Proposed method with fusion block and correlation constraint (d)
Ground truth. Red: necrotic and non-enhancing tumor core; Yellow: edema; Green:
enhancing tumor.
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Qualitative Results

The correlation constrain block can constrain the network to emphasize
the interested tumor region for segmentation.

Figure: Visualization of feature maps in the layer before output.
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Conclusion

A 3D multimodal brain tumor segmentation network guided by a multi-
source correlation constraint.
The experimental results demonstrated the effectiveness of our method.
To investigate other methods to describe the multi-source correlation
representation.
To valid our method in other segmentation datasets.
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Thanks for your attention
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