3D Medical Multi-modal Segmentation Network Guided

by Multi-source Correlation Constraint

Tongxue Zhou!, Stéphane Canu!, Pierre Vera®, Su Ruan!

1 Normandie Univ, INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, France

2Department of Nuclear Medicine, Henri Becquerel Cancer Center, Rouen, France.

Normandie Unversie NN

AUNIVERSITE ik i
IDE ROUEN ﬁ lltls




Overview

@ Introduction

© Proposed Network Architecture
© Implementation Details

@ Experiment Results

© Conclusion

Zhou, Canu, Vera, Ruan Brain tumor segmentation



Introduction

o Early diagnosis of brain tumors is important in clinical diagnosis and
treatment planning!.

@ Multi-modal images can provide the complimentary information to
improve the segmentation accuracy.

Figure: Example of data from a training subject. From left to right: FLAIR, Tlc,
T1, T2 images, and the ground truth labels. Red: Necrotic and Non-enhancing
tumor, yellow: edema, green: enhancing tumor, black: healthy tissue and
background.

Tongxue Zhou, Su Ruan, and Stéphane Canu. “A review: Deep learning for medical
image segmentation using multi-modality fusion”. In: Array (2019), p. 100004.
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Introduction

e Motivation: A strong correlation between multi MR modalities?, since
the same scene is observed by different modalities.

@ Our proposal: A novel correlation constraint block to discover the
latent multi-source correlation and help the segmentation.

(a) (b) (c) (d) (e) (f)
Figure: Joint intensity distributions of MR images: (a) T1-FLAIR, (b) T1-T1c,(c)
T1-T2, (d) FLAIR-T1c, (e) FLAIR-T2, (f) T1lc-T2. The intensity of the first
modality is read on abscissa axis and that of the second modality on the ordinate
axis.

2 Jerome Lapuyade-Lahorgue, Jing-Hao Xue, and Su Ruan. “Segmenting multi-source
images using hidden Markov fields with copula-based multivariate statistical
distributions”. In: |[EEE Transactions on Image Processing 26.7 (2017), pp. 3187-3195.
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Proposed Network Architecture
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Figure: The pipeline of the proposed method, consisting of feature extraction,
correlation constrain and fusion block, 4 color circles represent 4 modality feature
representations.
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Detailed Network Architecture
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Figure: Overview of our proposed segmentation network framework.
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Modeling the Multi-source Correlation

@ LC block: to discover the latent correlation.

e Correlation constraint loss (KL based): to constrain the correlation
between modalities.
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Figure: Architecture of Correlation Constrain (CC) block.
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Dual Attention Fusion Block

@ Dual Attention Fusion Block: modality attention module and spatial
attention module3.

@ To weight the feature representations of the four modalities based on
their contributions to the final segmentation.
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Figure: The architecture of the proposed dual attention fusion block.

3 Abhijit Guha Roy, Nassir Navab, and Christian Wachinger. “Concurrent spatial and
channel ‘squeeze & excitation'in fully convolutional networks”. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. Springer.
2018, pp. 421-429.
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Implementation Details

o Dataset: BraTS2018

e 285 training data
e T1, FLAIR, Tlc and T2
e Whole Tumor, Tumor Core and Enhancing Tumor

@ Pre-processing

o Crop and resize: 240 x 240 x 155 to 128 x 128 x 128
e Bias Field Correction: correct the distortion of MRI data
o Intensity Normalization

@ Loss function
o Liotat = Ldice + 0.1Lcorrelation-
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Quantitative Results

Table: Evaluation of our proposed method on Brats 2018 training dataset, (1)
Baseline (2) Baseline 4+ Dual attention fusion (3) Baseline + Dual attention
fusion + Correlation constrain, ET, WT, TC denote enhancing tumor, whole

tumor and tumor core, respectively.

Methods Dice Score

Hausdorff Distance

ET WT TC

ET WT TC

(1) | 0726 0867 0.764
(2) | 0733 0879 0.765
(3) |0.747 0.886 0.776

8.743 8.463 9.482
8.003 7.813 9.153
7.851 7.345 09.016
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Qualitative Results

Figure: Visualization of the segmentation results. (a) Baseline (b) Baseline with
fusion block (c) Proposed method with fusion block and correlation constraint (d)
Ground truth. Red: necrotic and non-enhancing tumor core; Yellow: edema; Green:

enhancing tumor.
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Qualitative Results

@ The correlation constrain block can constrain the network to emphasize
the interested tumor region for segmentation.

Without CC block

With CC block

Figure: Visualization of feature maps in the layer before output.
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Conclusion

@ A 3D multimodal brain tumor segmentation network guided by a multi-
source correlation constraint.

@ The experimental results demonstrated the effectiveness of our method.

@ To investigate other methods to describe the multi-source correlation
representation.

@ To valid our method in other segmentation datasets.
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Thanks for your attention
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