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Fig. 2. Visual comparison samples of the shape feature learned by the second
layer of PointSpherical on the ModelNet40 dataset. The points of input only
have coordinates as information, and we color them for visualization.

a fovea image-like snapshot of the 3D neighborhood around
each point. Each local Shape Context could be thought of as
a tiny fovea picture inside the whole 3D shape volume: it has
detailed shape information nearby and a blurred picture of far-
away points. As such, we regained the concept of the receptive
field: a regular-shaped neighbor for spatial convolution. We
also retain the part’s concept by allowing each point to have
a predefined neighborhood for max-pooling and coarsening.

Similar to Shape Context [4] and Geometric Blur [5], our
features exhibits semi-rotational invariance. Due to the radial-
angular space partitioning, 3D object part articulation has little
or no effect on the ShapeContext feature. We demonstrate this
on the baseball player example from the ModelNet dataset [6],
where the head of the player is rotated. The feature response
of the head before and after rotation stays constant.

It is important to note that our approach is different
from ShapeContextNet [7], where they developed a general
concept of ShapeContext. However, they have to recompute
the receptive field at each stage of computation. Besides,
ShapeContextNet uses the raw point count as a shape feature,
whereas we first apply 1x1 convolution to extract higher-level
features and use pooling to summarize information in the bin.
Despite having a similar but simpler design, our algorithm
achieves better performances.

Our design also shares similarities with Pyramid Scene
Parsing Network (PSPnet [8]) and Deep High-Resolution
Representation Learning (HRnet [9], [10]), where information
across the different image scales are combined to provide both
global and local information. However, our features integrate
neighboring point information across the scales instead of
itself across the scales. This difference in design could po-
tentially remove conflicting information across the scales on

each point while gaining contextual information.
We evaluated our methods on 3D point cloud processing

and 2D shape recognition (MNIST [11]) benchmarks and
demonstrated the state of art performances.

II. RELATED WORK

A. View-based and volumetric methods.

View-based methods learn the model of a 3D shape from
various 2D views from different angles. In recent years,
several methods have been proposed to process view images
through deep neural networks. However, due to many self-
occlusions, 2D projections could cause much loss of 3D shape
information. Another strategy [12] converts point cloud data
to grid voxels and then apply 3D CNN to extract shape
information. The main limitation is the approximation quality
of the underlying shape due to the low resolution enforced
by 3D grid. Although a varity of methods has been proposed
to improve memory and computation efficiency by exploiting
voxelized point clouds’ sparsity, they still rely on a subdivision
of a bounding volume. Different from the above works,
PointSpherical processes 3D point cloud directly.

B. Deep learning on point cloud.

PointNet [1] is a pioneering work in learning each point
independently and gathering the final features together with
max-pooling, which is an asymmetric operation and not sub-
ject to the order of input sequence. However, it ignored the
local structures. Then, [13]–[15] are proposed to partition point
cloud into local subsets and apply PointNet to learn the local
pattern. In addition, [16] partition point cloud into geometric
elements. [17] proposes a X -Conv operator to weights and
permutes input points and features before a typical convolution
processes them. [18]–[20] apply graph convolution to learn
over a local graph.

C. Deep Contextual learning on point cloud.

Contextual information is important for identifying the
implicit shape pattern. PointNet++ [13] follows the traditional
multi-scale learning by directly capturing context on the same
layer, which often causes huge complexity. Hence an alternate
called multi-resolution grouping [13] is devised for efficiency.
It forces each layer to learn from its previous layer and the
raw input (in the same local region) simultaneously. However,
this can be less effective as it actually abandons crucial con-
text acquisition. ShapeContextNet [7] finds another strategy
inspired by shape context [4]. Instead of the original handcraft,
it applies self-attention [21] to learn a weight for all point pairs
dynamically. Though fully automatic, it lacks local-to-global
semantic learning like CNN. By contrast, we develop a deep
hierarchy by an efficient generalized convolution operator and
repeatedly aggregate multi-level contextual semantics in this
hierarchy in an organic manner. Besides, [20] operates Kernel
Point Convolution on point clouds without any intermediate
representation, and [20] processes Point Cloud using high-
dimensional convolutions.
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Fig. 3. Overview of Spherical Hierarchical Pool (SHPool)
.

III. METHOD

Two main properties of a good feature representation we
seek in 3D point cloud processing are: 1) contextual infor-
mation, and 2) parts separation. Contextual information is
vital because points by themselves do not contain much shape
information. It is their relative geometrical position in a group
that produces shape cues for recognition. Parts separation is
crucial because we want to integrate information from the
object itself, but not from the background.

In the absence of an oracle that produces a perfect context
map and part segmentation, we have found a good approxima-
tion. Our idea is to create an ego-centric view center on each
point cloud of its spatial context. We want to maintain detailed
shape information for points nearby and general information of
points far away. By maintaining more second-rate information
for faraway points, we hedge our information gathering again
possible background clutter while maintaining a partial guess
of the context.

This need for capturing coarser information faraway and
detailed information nearby naturally leads to the ego-centric
spherical delineation of the space. We implement this idea by
placing a spherical ball around each 3D point and define a
receptive field in terms of the spherical coordinates (r,�, ✓):
distance (r) denoting the radial distance to the origin, and two
angles (�, ✓) denoting the azimuthal angle and the polar angle
respectively.

A. Spherical Hierarchical Pool (SHPool)

The image’s grid structure allows the convolution layer
in CNN to extract the contextual information of each pixel.
The pooling layer can condense redundant information with
suitable kernel size. The Spherical coordinate provide us a

similar structure in 3D for convolution and pooling. Inspired
by ShspeContext [4] and Geometric Blur [5]. Our SHPool
contains three key modules: Shape Context Module (SCM,
for short), Geometric Blur Module(GBM, for short), and
Hierarchical Pool Module(HPM, for short). In the following,
a brief introduction of the SHPool process and details of each
module are presented to illustrate our model’s principle.

a) Spherical modeling: To start, we take a matrix with
a size of N ⇥ (d + C) as input where N is the number of
points, d, and C are dimensions of Cartesian coordinates and
features respectively. We then use the farthest point sampling
(FPS) to select centroid points {x1, x2, ..., xm} from the input.
To construct a spherical neighborhood {Pi ⇢ R

3} for each
centroid point xi, we search its surrounding points {Xij 2 Pi}
within a radius r. In each neighborhood, we transform the
Cartesian coordinates of all the points into local spherical
coordinates {rij ,�ij , ✓ij}. To represent the receptive field, we
use the SCM to partition the local spherical neighborhood
into several sector bins {bik 2 Bi}. Then, GBM is applied
to blur the information of each point to sector bin{bik 2 Bi}.
Finally, HPM extracts rich ShapeContext feature by iteratively
applying 1⇥ CNN convolution in each point and max-pooling
over points. The detailed pseudo-code of Spherical Hierarchi-
cal Pool is presented in Algorithm 1.

b) Shape Context Module: In order to cast each point
to the receptive field according to the spherical coordinate
metric tensor, we follow 3D Shape Context (3DSC) [22]
to divide every spherical neighborhood {Pi ⇢ R

3} into
K(K = nr⇥n�⇥n✓, nr is the partition num arcoss r and n�,
n✓ can be analogied) sector bins {bi1, bi2, ..., bik} but without
log-polar. The left part of Fig.4 illustrates a basic division in
2D plane. Note that unlike traditional 3DSC, the overlapped
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Algorithm 1 Spherical Hierarchical Pool
Input: X: point set from previous layer, N ⇥ (dc + C);

Dc: Cartesian coordinates of point set X , N ⇥ dc;
F : features of point set X , N ⇥ C;
Sball: the sampling number of point in one sphere;
Sbin: the sampling number of point in one sector bin;

Output: F̂ : pooled features, M ⇥ Cout;
1: Initial Overlapped 3D Shape Contexts and compute bins;
2: D

m
c  Dc, compute cartesian coordinate of M centroids

by FPS, M ⇥ dc;
3: D

l
c  {Dc, D

m
c }, compute local cartesian coordinate of

X centered on X̂ , M ⇥ Sball ⇥ dc;
4: Ds  D

l
c, transform Cartesian coordinates to Spherical

coordinates, M ⇥ Sball ⇥ ds;
5: Fb  {Ds, F}, extract features of sector bins using

Geometric Blur Module, M ⇥K ⇥ Cb;
6: repeat
7: F

0
b  Fb, apply 1*1 convolution operation on Fb, M ⇥

K ⇥ C
0
b;

8: F
p
b  F

0
b, downsampling F

0
b using Spherical Max-Pool,

M ⇥K
p ⇥ C

0
b;

9: Fb  F
p
b , M ⇥K

p ⇥ C
0
b;

10: until K = 1
11: F̂  Fb, M ⇥ C

0
b;

12: return F̂

OverlapOverlap

Fig. 4. An example of Overlapped Shape Contents in 2-D.

shape context illustrated in the right part of Fig. 4 is applied
to dig rich contextual information. This is similar to classic
overlapped grid convolution when stride is smaller than
kernel size.

c) Geometric Blur Module.: Given a spherical neighbor-
hood {Pi ⇢ R

3}, surrounding points {Xij 2 Pi} and K bins
{bi1, bi2, ..., bik}, our Geometric Blur Module is expected to
gather the shape context feature effectively considering the
sparse points in mostly sector bins. Inspired by the Geometric
Blur [5], which is developed to compute the measure of
similarity between image patches and perform more effective
while applied to sparse signals and can be formulated as Eq.
1:

G1(x) =

Z

T2T
I(T (x)) dT, (1)

Fig. 5. An example of Spherical Max-Pooling in 2D

where T is the geometric distortion contained in some set T
of boundary transforms. I(x) denotes a signal, and x is the
coordinate.

Geometric blur applies gaussian average pooling and blur-
ring changes with the radial distance from the center. To
achieve the same effect, we formulate GBM as Eq.2

Fbik = MLP
1(A(g(MLP

2(Dxij )), g(Fxij ))),

8xij 2 N (bik),
(2)

where Fbik is the feature of bin{bik}, Dxij is the local
spherical coordinate of xij in Pi and Fxij is the feature
of xij . g is symmetric(e.g ., max, sum, avg), A gathers the
information of coordinates and features(e.g ., add, concat),
MLP

1 is the feature extractor of pooled features. MLP
2

is the feature extractor of coordinates. MLP
1 and MLP

2

both share parameters across spheres and sector bins. In
this way, The pooling region expands with radius distance
r and can achieve the same function as Geometric Blur.
Therefore, the performance comparisons with various methods
presented in Fig. 6 show the robustness of our model and
the performance comparison with PointNet++ [13] that applies
tiny PointNet [1] learn over each neighborhood presented in
Sec. A also can prove that our model is more powerful.

d) Hierarchical Pool Module: Aiming at integrating in-
formation of bins K ⇥ Cbin, we propose the Hierarchy Pool
Module, composed of iterative convolution and spherical max-
pool illustrated in the right part of Fig.3, whose corresponding
pseudo-code can be found from line 6 to line 10 in Algorithm1.
The spherical max-pool can be formulated as follows,

f̂
c
br,�,✓

= max{f c
br0,�0,✓0

; r0 2 [rsr, rsr + dr � 1],

✓
0 2 [✓s✓, ✓s✓ + d✓ � 1],�0 2 [�s�,�s� + d� � 1]},

8xij 2 N (bik)

(3)

where (r, �, ✓) start from 0. In special, Fig.5 showes a example
of spherical max-pool in 2D.

B. Properties
a) Invariance: Spherical Hierarchical Pool can maintain

rotation invariance, translation invariance, and scale invariance
like Shape Contexts [4] and perform significantly in robustness
to noise. Point cloud learning is sensitive to the coordinates
of points. To maintain rotation invariance, SHPool establishes
one new coordinates system for every spherical neighborhood
{Pi ⇢ R3} according to the coordinate and normal of
centroids.
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Thanks for Listening！
Hua Lin


