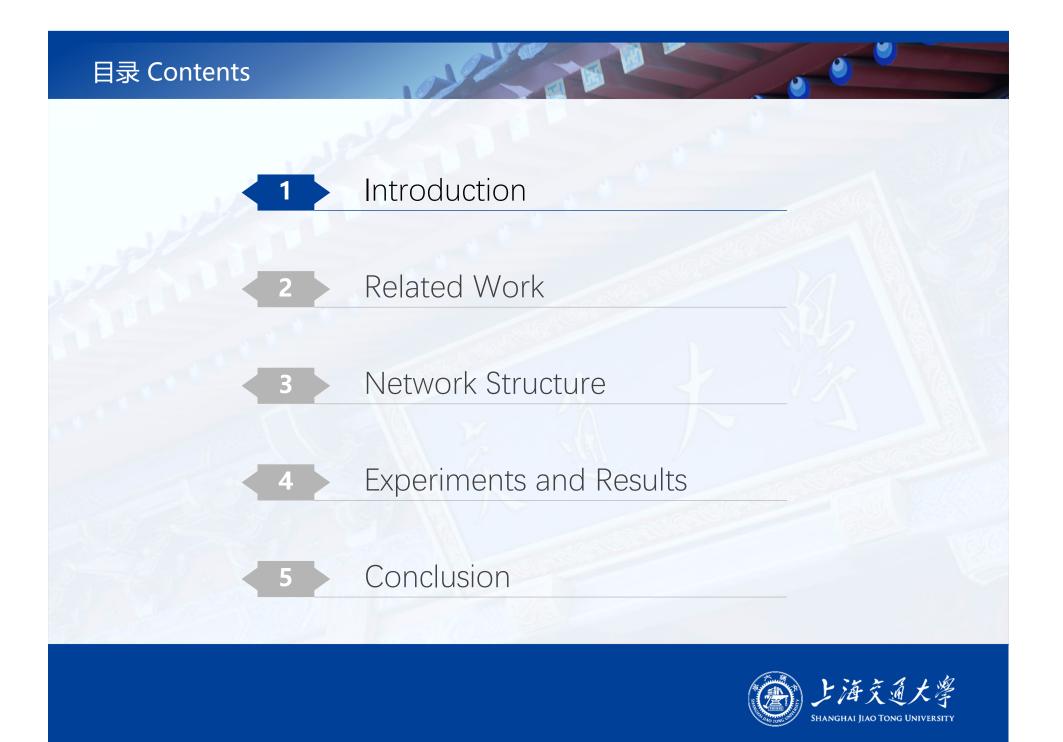


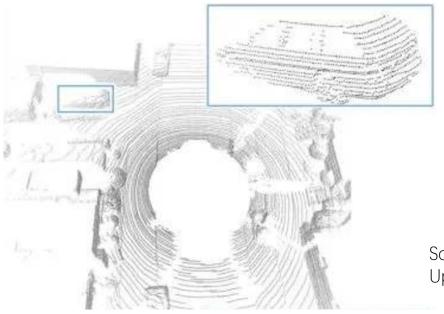
Cross-Regional Attention Network for Point Cloud Completion

Hang Wu, Yubin Miao Shanghai Jiao Tong University, Shanghai, China

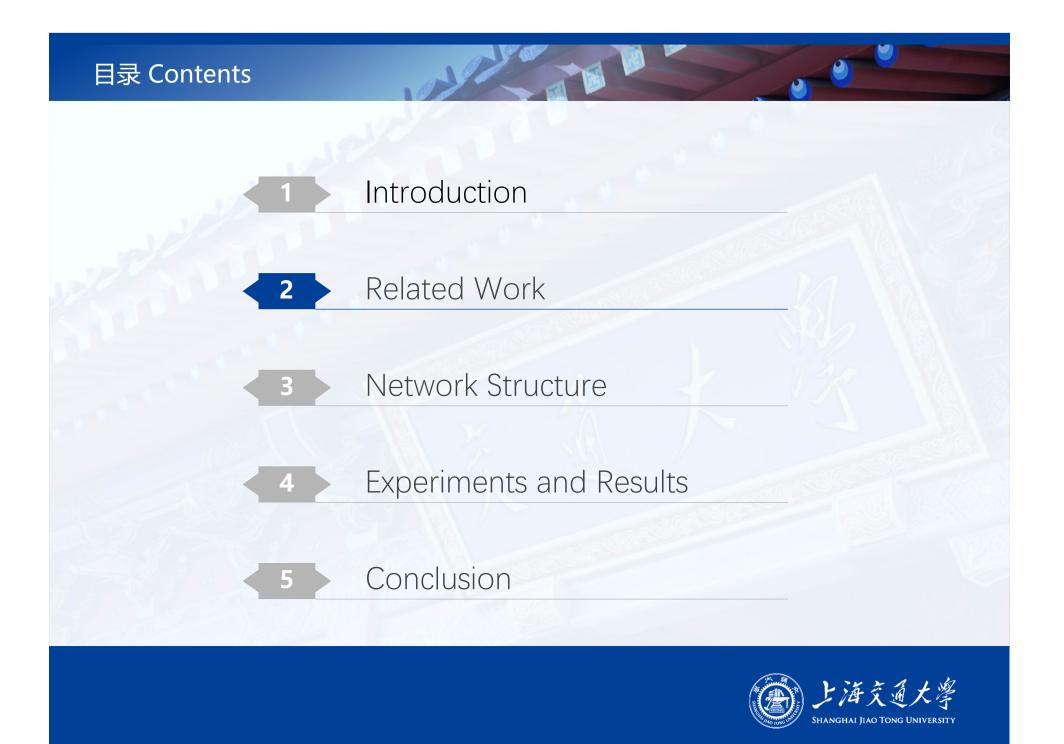


Introduction

- Raw point clouds obtained from 3D sensors are always **not complete** due to occlusions, viewing angles and surface material properties. These partial point clouds are likely to cause **structural loss** of object shapes and bring about difficulties to further high-level 3D visions.
- In this paper, we propose a point cloud completion network using cross-regional attention.



Source: Ruihui Li, et al., PU-GAN: a Point Cloud Upsampling Adversarial Network



3D shape generation

- L-GAN (P. Achlioptas , et al., ICML 2017):
 - Propose a pioneering point cloud auto-encoder.
 - Uses PointNet as encoder and fully connected layers as decoder.
 - Uses adversarial training.
- FoldingNet (Y. Yang , et al., CVPR 2018) & AtlasNet (T. Groueix , et al., CVPR 2018) :
 - Improve the decoders by borrowing the idea of manifold.
 - FoldingNet learns a mapping function of a canonical 2D grid and 3D surface.
 - AtlasNet learns the mapping of a set of 2D squares to 3D shape .

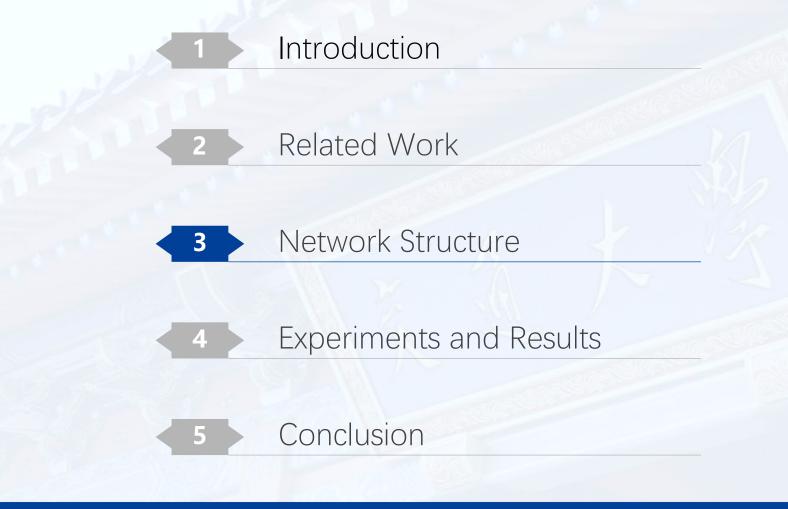
Point cloud completion

- PCN (W. Yuan, et al., 3DV 2018):
 - First network specialized for point cloud completion.
 - Uses a modified PointNet-based encoder.
 - Two-stage decoder (coarse->fine).
- PF-Net (Z. Huang , et al., CVPR 2020):
 - A feature-points-based multi-scale generating (coarse->fine).
 - Predict only missing part of partial point cloud.
 - Defines the missing parts by hierarchically removing certain points from complete point cloud.

Purpose of this paper

- All the above-mentioned methods only extract global features in the encoder, which might make the network lose the ability of on local detail awareness.
- <u>Main purpose of this paper:</u>
- Apply local feature awareness module in point cloud completion to generate point clouds with more details and smoother shapes, and avoid potential instability caused by local region sampling.

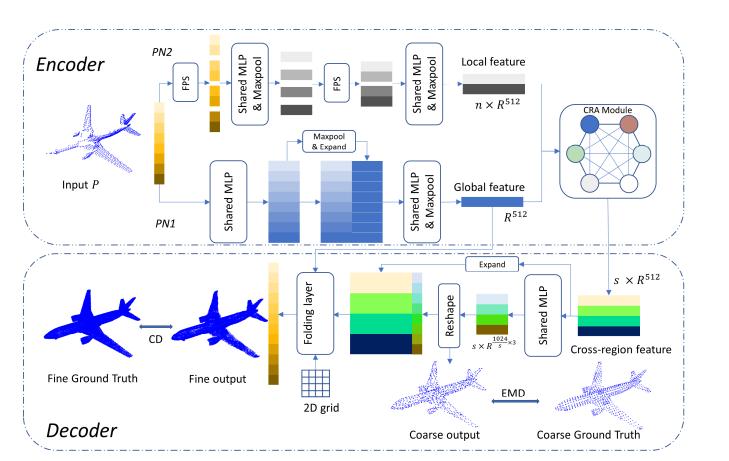
目录 Contents



Тяли

Π

Network Structure



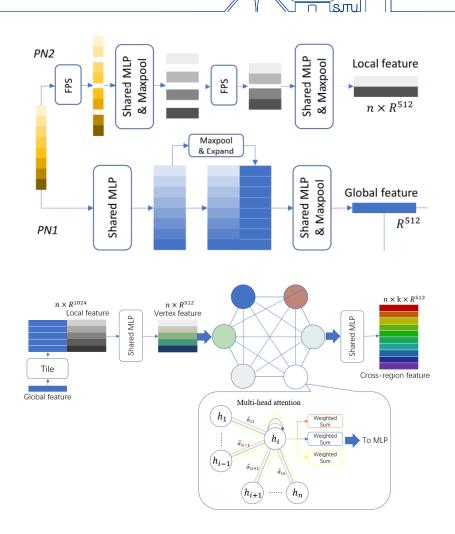
Encoder

Multiscale Feature Extraction module (MFE):

Independently extract both global and local features from the inputs.

Cross-Regional Attention module (CRA):

Interpret local features under the condition of global features, learn the relationships among these conditional features. It is realized by convolution with attention on a fully-connected feature graph.



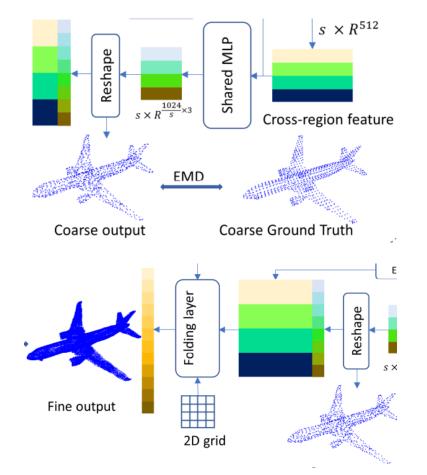
Two-step decoder

Coarse decoder:

Decode each cross-region feature vector to a point set with fixed number of points. All these point sets will form the skeleton of complete point cloud.

Fine decoder:

For each point in coarse point cloud, reuse its corresponding cross-region feature and global feature to fold a 2D grid.



Loss function

• Earth Moving Distance (EMD): Used for guide coarse point cloud generation.

Page . 12

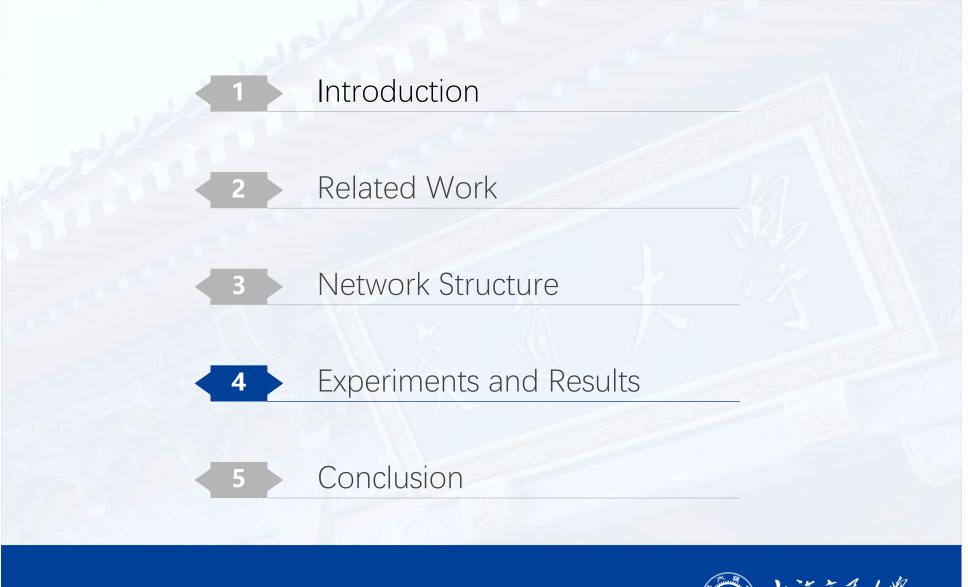
18

$$EMD(S_1, S_2) = \min_{\phi:S_1 \to S_2} \sum_{x \in S_1} \min_{y \in S_2} ||x - \phi(x)||_2$$

• Chamfer Distance (CD): Used for guide fine point cloud generation.

$$CD(S_1, S_2) = \frac{1}{|S_1|} \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2 + \frac{1}{|S_2|} \sum_{y \in S_2} \min_{x \in S_1} ||y - x||_2$$

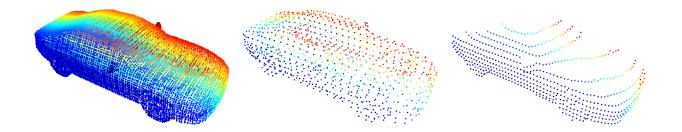
目录 Contents



Experiments and Results

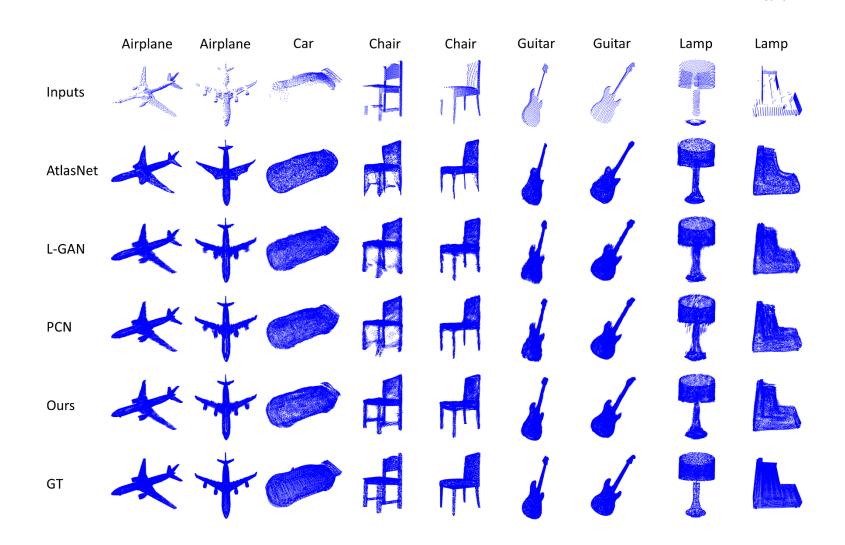
Page.14

• We train and test our network, as well as other existing point cloud generate methods, on **six** categories of objects in *ModelNet* dataset.



An Example of complete (ground truth) and partial (input) point clouds in our dataset. (Left) A complete point cloud with 16384 points. (Middle) A complete point cloud with 1024 points. (Right) A partial point cloud generated by a virtual 64-channel LiDAR from a near view point.

Experiments and Results



Page . 15

Is.

Experiments and Results

TABLE I.	QUANTITATIVE COMPARISON OF POINT CLOUD COMPLETION IN TERMS OF EARTH MOVING DISTANCE ($EMD \times 100$)								
Methods	Average	Airplane	Car	Chair	Guitar	Lamp	Sofa		
L-GAN	13.49	8.52	8.09	16.79	11.01	25.88	10.65		
AtlasNet	15.20	10.16	10.80	19.00	11.43	26.38	13.45		
PCN	12.84	8.20	7.82	16.22	10.37	24.40	10.03		
Ours	11.70	7.58	7.94	15.12	9.15	20.53	9.89		

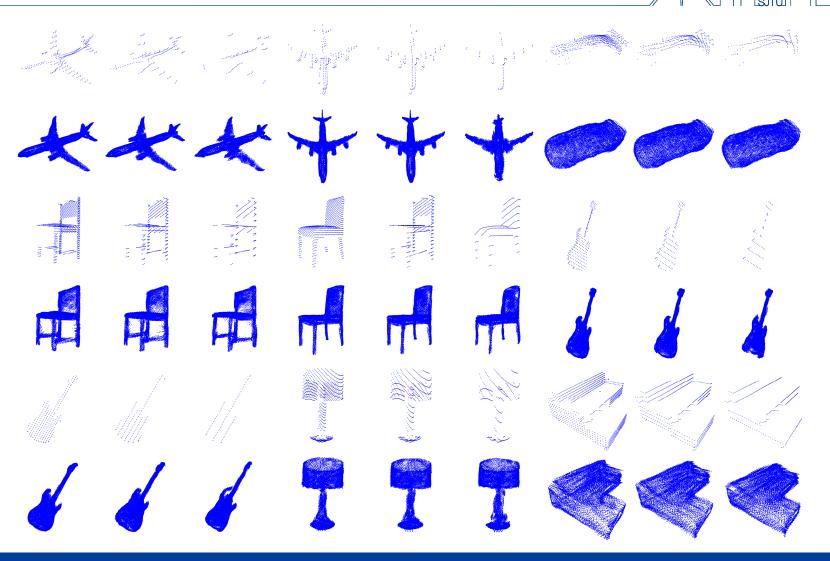
TABLE II. QUANTITATIVE COMPARISON OF POINT CLOUD COMPLETION IN TERMS OF CHAMFER DISTANCE ($CD \times 100$)

Methods	Average	Airplane	Car	Chair	Guitar	Lamp	Sofa
L-GAN-Folding	3.06	1.68	2.01	3.93	1.80	6.04	2.92
AtlasNet	5.24	3.30	4.19	6.74	2.88	8.90	5.43
PCN	2.89	1.58	1.91	3.73	1.68	5.72	2.89
Ours	2.70	1.56	1.85	3.62	1.54	5.06	2.61

*Note that the values in this table are about 2-4 times of those reported in PCN [28], this is because out ground truth points are normalized to [-1,1], while in PCN it is [-0.3,0.3]

More Results from Virtual LiDAR Scanning

Page.17





Conclusion

• We propose *a new point cloud completion network* that is able to reconstruct high-density complete point clouds from partial point clouds.

Page. 19

- Through *parallel multiscale feature extraction*, *cross-regional feature fusion* and *two-stage feature decoding*, we are able to <u>introduce local feature extraction</u> in generative tasks.
- The test results on the ModelNet dataset show that our network can not only output smooth global shapes, but can also provide details as many as possible.
- We hope that our method could contribute to further 3D environment perceptions.

Thank You

