Zoom-CAM: Generating Fine-Grained Pixel Annotations from Image Labels

Xiangwei Shi, Seyran Khademi, Yunqiang Li, Jan van Gemert Computer Vision Lab Delft University of Technology, the Netherlands

• Weakly supervised object localization and segmentation tasks & pseudo-labels

- Weakly supervised object localization and segmentation tasks & pseudo-labels
- Current methods for pseudo-labels:
 - Class activation mapping (CAM)^[1]
 - Grad-CAM^[2]

TUDelft

[1] Zhou et al. Learning deep features for discriminative localization

[2] Selvaraju et al. Grad-cam: Visual explanations from deep networks via gradient-based localization

- Weakly supervised object localization and segmentation tasks & pseudo-labels
- Current methods for pseudo-labels:
 - Class activation mapping (CAM)
 - Grad-CAM
 - Only using the deepest, lowest resolution convolutional layer
 - Missing information from intermediate layers of CNN

• We proposed Zoom-CAM: generating pixel-level pseudo-labels from class labels

- We proposed Zoom-CAM: generating pixel-level pseudo-labels from class labels
- Zoom-CAM:
 - Capture fine-grained small-scale objects
 - Integrate the visualizations from all intermediate layers in a CNN

• Suppose $B_p(m,n)$ is the m, n-th activation in the p-th feature map of any intermediate layer in a classification CNN,

• Suppose $B_p(m,n)$ is the *m*, n-th activation in the *p*-th feature map of any intermediate layer in a classification CNN, then

$$L_{m,n}^{c} \coloneqq ReLU(\frac{1}{Z}\sum_{p}\frac{\partial S^{c}}{\partial B_{p}(m,n)}B_{p}(m,n)),$$

is the visual explanation of that convolutional layer, where Z is the number of activations in an individual feature map and S^c is the final class score.

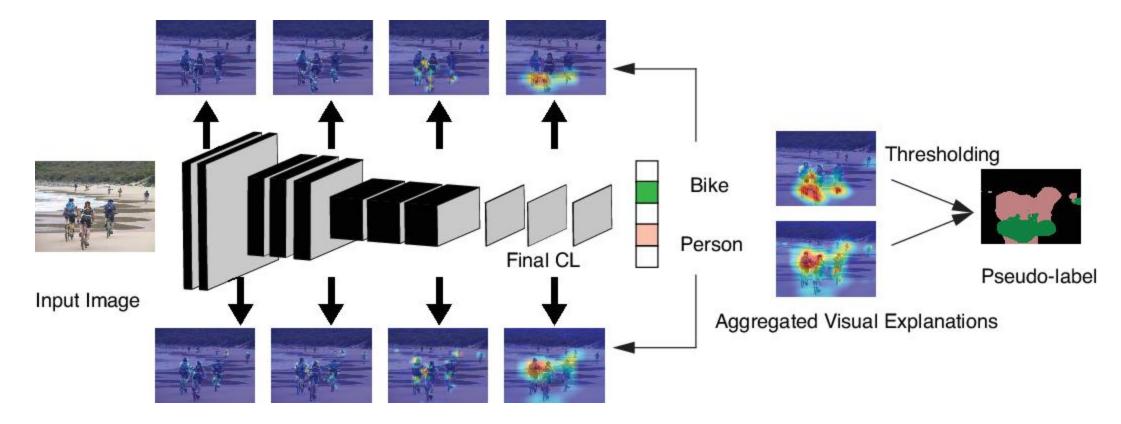
$$L_{m,n}^{c} \coloneqq ReLU(\frac{1}{Z}\sum_{p}\frac{\partial S^{c}}{\partial B_{p}(m,n)}B_{p}(m,n))$$

• Similar to Grad-CAM, we use the backwards gradient flow to quantify the contribution of activations to the class score.

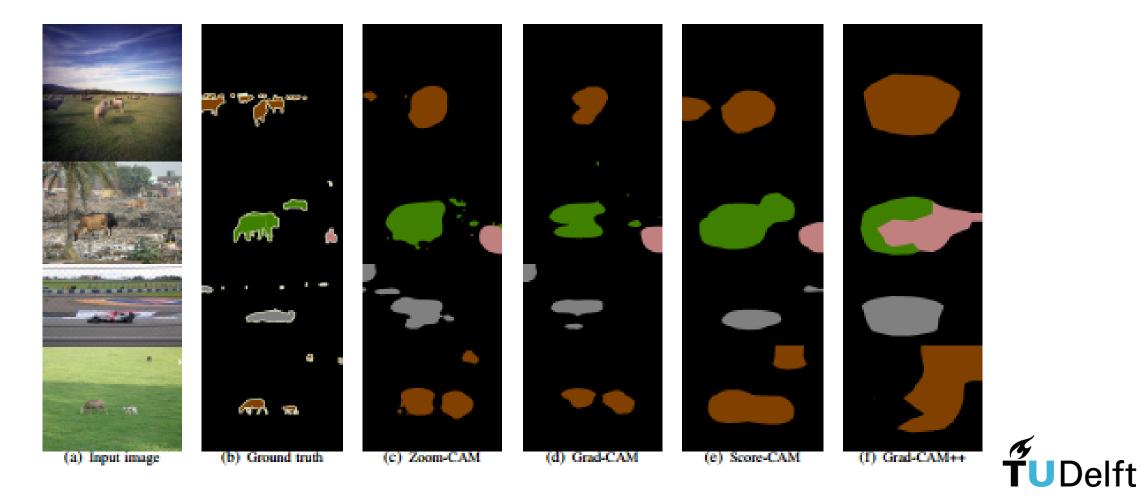
$$L_{m,n}^{c} \coloneqq ReLU(\frac{1}{Z}\sum_{p}\frac{\partial S^{c}}{\partial B_{p}(m,n)}B_{p}(m,n))$$

- Similar to Grad-CAM, we use the backwards gradient flow to quantify the contribution of activations to the class score.
- Differently, in Zoom-CAM, each activations is weighted individually.

Overview



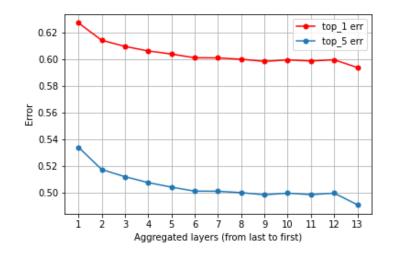
Examples of pseudo-labels

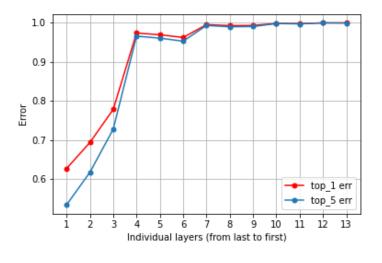


• 1. Classification and localization error rates on ISVRC2012 val dataset. Zoom-CAM performs better than Grad-CAM.

	Classifica	ation error	Localiza	tion error
	Top-1	Top-5	Top-1	Top-5
Zoom-CAM	31.87	11.54	59.11	48.64
Grad-CAM	31.87	11.54	61.95	52.35

• 2. Top-1 and top-5 localization error rates on ILSVRC2012 val dataset for ablation study. (a) aggregating intermediate feature maps, (b) single intermediate layer





b

a

• 3. Comparison of quality of pseudo-segmentation-labels of PASCAL VOC 2012 val set measured in IoU. Zoom-CAM generate better pseudo-labels than other methods.

Method	_	IoU													mloU							
Method	¥g.	8	Q		=	æ			-	÷	*	ble		ş	ţ,	200	Ħ	d d		.5		moe
	μă.	ph.	ž	<u>,6</u>	Z	Z	ĝ	8	-P	문	8	dable	8	2	00	pers	pha	she	sof	2	≧	
Grad-CAM++	64.7	27.8	17.8	25.0	23.8	31.6	47.2	38.8	46.6	18.4	42.1	32.5	40.8	40.0	41.6	32.2	26.8	39.6	33.3	42.1	32.9	35.5
Grad-CAM	66.5	29.7	18.3	25.5	19.3	33.6	51.0	42.4	49.0	19.2	41.2	36.7	41.6	40.5	43.6	41.9	28.9	39.8	34.2	39.3	36.5	37.1
Score-CAM	68.1	31.8	19,1	29.7	29.3	30.9	50.3	45.3	47.9	19.8	41.8	32.3	44.7	42.0	47,2	35.4	27.9	42.8	36.6	47.1	31.8	38.2
Zoom-CAM	68.9	31.0	19.7	26.9	20.6	34.5	50.3	42.3	50.1	20,4	45.6	35.3	43.2	43.8	46.0	42.0	31.1	45.0	38.3	40.1	38.6	38.8

• 4. Semantic segmentation performance in mIoU evaluated on the PASCAL VOC 2012 val set. The performance of weakly supervised semantic segmentation[3] using pseudo-labels generated by Zoom-CAM is better than the one by CAM.

Method	val			
IRNet(ResNet50)-CAM	63.5			
IRNet(ResNet50)-Zoom-CAM	64.6			

[3] Ahn et al. Weakly supervised learning of instance segmentation with inter-pixel relations

Thank you!

