

PrivAttNet: Predicting Privacy Risks in Images Using Visual Attention

Chen Zhang

Thivya Kandappu

Vigneshwaran Subbaraju

How to estimate the measure of psycho-physical phenomena "privacysensitivity"?

Goals

2. Localise the privacy attributes using soft heat-maps

Input image

1. Quantifying the privacy sensitivity Privacy Risk Score

PrivAttNet

Key Results

PERFORMANCE IN ESTIMATION OF PRIVACY RISK

Method	L1-Error	Correlation		
		$ ho_p$	$ ho_s$	
AP-PR [1]	0.656	_	_	
PR-CNN [1]	0.637	_	_	_
PrivAttNet	0.40	0.87	0.84	
PrivAttNet _{MLC}	0.44	0.83	0.76	
PrivNet	0.43	0.83	0.78	
~ 59% improvement in L1 error			Better correlation with human provided scores	

[1] T. Orekondy, B. Schiele, and M. Fritz, "Towards a visual privacy advisor: Understanding and predicting privacy risks in images," in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 3686–3695.

Key Results

Small objects (inc. background)

Cluttered objects

PrivAttNet: Predicting Privacy Risks in Images Using Visual Attention

Chen Zhang Thivya Kandappu Vigneshwaran Subbaraju

For further details, please visit our poster:

Poster Session: PS T3.9

2870

OR

Contact: thivyak@smu.edu.sg