

Transformer Networks for Trajectory Forecasting

Francesco Giuliari¹, Irtiza Hasan², Prof. Marco Cristani¹, and Prof. Fabio Galasso³

¹ University of Verona,
² Inception Institute of Artificial Intelligence (IIAI) ,
³ Sapienza University of Rome

Trajectory forecasting

Goal:

• Predict people movements

Utility:

- Person detection and tracking
- Autonomous agents

Standard solution:

• Recurrent Neural Networks

Our proposal:

• Use the Transformer Network[1]

[1] Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems*. 2017.

Images from social Istm and "Back to the Future" blog post by Boris Ivanovic

LSTM

- Use recurrent layers to deal with sequential data
- History encoded in a Hidden State
 - Limited memory
 - Risk of forgetting initial observations
- Observed values and previous predictions are treated in the same way
 - Amplification of prediction errors

- Use attention mechanisms to deal with sequential data
- All the input elements are available during inference
 - No loss of information
- Different treatment to observed values and previous predictions
 - Prediction errors can be controlled

LSTM

- Use recurrent layers to deal with sequential data
- History encoded in a Hidden State
 - Limited memory
 - Risk of forgetting initial observations
- Observed values and previous predictions are treated in the same way
 - Amplification of prediction errors

The Transformer

- Use attention mechanisms to deal with sequential data
- All the input elements are available during inference
 - No loss of information
- Different treatment to observed values and previous predictions
 - Prediction errors can be controlled

15/01/2021

Our proposed models (1/2)

TF

- Single prediction
- Input:
 - Velocity vectors
- Output:
 - Velocity vectors

Our proposed models (2/2)

TFq

- Quantized version
- Multiple prediction

Input:

• Sequence of clusters

Output:

• Cluster probabilities

15/01/2021

Multiple predictions

100 sampled trajectories

Kernel Density Estimation

Quantitative Results

Trajnet Benchmark

- Single prediction
- Server-side Testing
- Data from many datasets:
 - ETH
 - UCY
 - Stanford Drone Dataset
 - PETS 2009

Method	FAD	MAD	Needs social cues
TF	1.197	0.356	no
REDv3	1.201	0.360	no
SR-LSTM	1.261	0.37	yes
S.Forces (ewap)	1.266	0.371	yes
TF_q	1.300	0.416	по
BERT	1.354	0.440	по
BERT_NLP_pt.	1.357	0.447	по
MX-LSTM	1.374	0.399	yes
S.Forces (attr)	1.395	0.412	yes
LSTM	1.793	0.491	no
S-GAN	2.107	0.561	yes

Blue italic indicates approaches proposed in this work.

Comparison against SOTA

ETH+UCY: Single Prediction

	Linear	LSTM-based					TF-based
	Individual	Indiv	Individual		Social		
	Interpolat.	LSTM [10]	S-GAN-ind [10]	Social LSTM [10]	Soc. Att. [14]	Trajectron++ [22]	TF (ours)
ETH	1.33/2.94	1.09/2.94	1.13/2.21	1.09/2.35	0.39/3.74	0.71/1.68	1.03/2.10
Hotel	0.39/0.72	0.86/1.91	1.01/2.18	0.79/1.76	0.29/2.64	0.22/0.46	0.36/0.71
UCY	0.82/1.59	0.61/1.31	0.60/1.28	0.67/1.40	0.20/0.52	0.41/1.07	0.53/1.32
Zara1	0.62/1.21	0.41/0.88	0.42/0.91	0.47/1.00	0.30/2.13	0.30/0.77	0.44/1.00
Zara2	0.77/1.48	0.52/1.11	0.52/1.11	0.56/1.17	0.33/3.92	0.23/0.59	0.34/0.76
avg	0.79/1.59	0.70/1.52	0.74/1.54	0.72/1.54	0.30/2.59	0.37/0.95	0.54/1.17

- **TF** outperform all the methods that use the same amount of information
- **TF** outperform 2 of the 3 methods that use social cues while having access to less information

Comparison against SOTA

ETH+UCY: Multiple Prediction

- TFq vastly outperform the other method that doesn't use additional information
- **TFq** outperform 2 of the 3 methods that use additional information

	LSTM-based						
	Individual	Social		Soc.+ map	Ind.		
	S-GAN-ind [10]	S-GAN [10]	Trajectron++ [22]	Soc-BIGAT [14]	$\frac{\mathrm{TF}_{q}}{(\mathrm{ours})}$		
ETH Hotel UCY Zara1 Zara2	$\begin{array}{c} 0.81/1.52\\ 0.72/1.61\\ 0.60/1.26\\ 0.34/0.69\\ 0.42/0.84\end{array}$	0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84	0.43/0.86 0.12/0.19 0.22/0.43 0.17/0.32 0.12/0.25	0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75	$\begin{array}{c} 0.61 \ / \ 1.12 \\ 0.18 \ / \ 0.30 \\ 0.35 \ / \ 0.65 \\ 0.22 \ / \ 0.38 \\ 0.17 \ / \ 0.32 \end{array}$		
Avg	0.58/1.18	0.61/1.21	0.20/0.39	0.48/1.00	$0.31 \ / \ 0.55$		

Summary

TF

In the paper:

- Additional tests with the BERT model
- In depth comparison of LSTM vs Transformer
- Ablation studies
 - Longer forecasting horizons
 - Prediction with missing observations

TFq

THANK YOU

Code is available on github!

