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Motivation | Spatio-Temporal Action Regions

e \We model context regions and their temporal evolution.
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Previous work

e First deep architecture was proposed by Ma et al. [2016].

e Contextual action recognition was proposed by Gkioxari et al.
[2015].
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Goals

e To present a region-based architecture that:
o Models contextual relationships.

o Predicts Action and Activities.

e To present two data augmentation strategies:
o Visual augmentation.

o Sequence augmentation.



Methodology | Region-Based Action Recognition Method
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Methodology | Primary Action Region: Hands

1. Skin detection
(Li and Kitani 2013).

2. Wrist location %
PAFs (Cao et al. 2017).

3. Rules for special cases:

No wrist is located No skin is detected No skin or wrist is found




Methodology | Secondary Action Region

e Aregion is chosen after classification.

e Up to 2K regions are proposed as candidates.
o Selective Search (Uijlings et al., 2013)
o MCG (Arbelaez et al. 2014)
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e Up to 2K regions are proposed as candidates.
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e Aregion is chosen after classification.




Methodology | Frame-Level Modeling
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Methodology | Action-level Modeling
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Methodology | Activity-level Modeling
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Methodology | Visual Data Augmentation

e The purpose is to smoothly rotate the frames.
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Methodology | Sequence Data Augmentation

e Semi-automatically sequence augmentation process.
e A 3-step process:

1) Cluster logical action groups.
2) Define possible operations: swap, add, or remove.
3) Randomly apply them.

Take Cut
Take Oil Open Oil Pour Oil Close Oil mushrooms mushrooms
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e Semi-automatically sequence augmentation process.
e A 3-step process:

1) Cluster logical action groups.
2) Define possible operations: swap, add, or remove.
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Methodology | Sequence Operations (1)
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Methodology | Sequence Operations (2)
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Methodology | Sequence Operations (3)
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Validation | Experimental Datasets

GTEA Gaze Gaze+
(Fathi et al., 2011) (Fathi et al., 2012) (Li et al., 2015)

# Videos 21 17 37

# People 4 14 6

# Actions 61 and 71 25 and 40 40
# Activities 7 - 7




Validation | Visual Data Augmentation

GAZE+ Classification Accuracy

Splits
Shot Evaluation | Sequence : : : : : : Average
Subject 1 | Subject 2 | Subject 3 | Subject 4 | Subject 5 | Subject 6
Original 55.56 64.09 45.89 62.88 61.9 56.67 57.83
Avg. Prediction
Augmented | 56.55 65.77 47.58 63.16 63.27 5417 58.41
Weighted Original 54.56 63.76 47.79 62.88 62.59 57.08 58.11
Avg. Prediction | Augmented | 56.94 63.76 49.47 63.16 60.54 54.58 58.08




Validation | Sequence Data Augmentation

GAZE+ Classification Accuracy

. Splits
Shot Evaluation | Sequence : : : : . . Average
Subject 1 | Subject 2 | Subject 3 | Subject 4 | Subject 5 | Subject 6
Original 58.53 64.43 51.37 64.54 64.63 56.25 59.96
Avg. Prediction
Augmented| 58.33 65.44 51.37 63.99 64.63 55 59.79
Weighted Original 58.13 63.42 52.21 63.44 62.59 57.08 59.48
Avg. Prediction | Augmented | 57.74 64.09 52 65.10 63.26 56.67 59.81




Validation | Comparative Results

Classification Accuracy

Method | GTEA 61* | GTEA 71 | GAZE 25" | GAZE 40" | GAZE+ Backbone CNN
CNN Baseline | 54.67 48.95 43.44 40.76 49.83
Ours (frame level) | 68.97 64.74 56.94 47.25 52.75 VGG-16

Ours (1 level LSTM)| 69.83 71.04 63.89 49.45 58.41 |Simonyan and Zisserman [2014b]
Ours (Hierarchical LSTM) | 70.69 72.95 65.28 52.75 59.96

Temporal Segments Network

67.76 67.23 - - 55.25

Wang et al. [2016] ResNet-34
LSTA-RGB He et al. [2016]

74.14 66.16 - - -
Sudhakaran et al. [2019b]

CNN-M-2048

Ma et al. [2016] 75.8 73.24 62.40 43.42 66.40 _
Chatfield et al. [2014]

Sudhakaran and Lanz [2018]| 77.59 77 - - 60.13
ResNet-34

LSTA He et al. [2016]
79.39 78.14 - - E
Sudhakaran et al. [2019b]




Conclusions

e Modeling contextual features and their temporal evolution is a
promising approach for egocentric activity recognition

e \We achieve state of the art results without relying on explicit
motion information.



