

Modeling Long-Term Interactions to Enhance Action Recognition

January 2021

Alejandro Cartas Ayala, Petia Radeva, and Mariella Dimiccoli

Motivation | Spatio-Temporal Action Regions

• We model context regions and their temporal evolution.

Previous work

- First deep architecture was proposed by Ma et al. [2016].
- Contextual action recognition was proposed by Gkioxari et al.
 [2015].

Image taken from Ma et al. [2016]

Goals

- To present a region-based architecture that:
 - Models contextual relationships.
 - Predicts **Action** and **Activities**.

- To present **two data augmentation strategies**:
 - Visual augmentation.
 - Sequence augmentation.

Methodology | Region-Based Action Recognition Method

Methodology | Primary Action Region: Hands

1. Skin detection (Li and Kitani 2013).

2. Wrist location PAFs (Cao et al. 2017).

3. Rules for special cases:

No wrist is located

No skin is detected

No skin or wrist is found

Methodology | Secondary Action Region

- A region is chosen after classification.
- Up to 2K regions are proposed as candidates.
 - Selective Search (**Uijlings et al., 2013**)
 - MCG (Arbelaez et al. 2014)

Methodology | Secondary Action Region

- Up to 2K regions are proposed as candidates.
 - Selective Search (**Uijlings et al., 2013**)
 - MCG (Arbelaez et al. 2014)
- A region is chosen after classification.

Methodology | Frame-Level Modeling

(Gkioxari et al. 2015)

Methodology | Action-level Modeling

Methodology | Activity-level Modeling

Methodology | Visual Data Augmentation

• The purpose is to smoothly rotate the frames.

Sequence

Methodology | Sequence Data Augmentation

- Semi-automatically sequence augmentation process.
- A 3-step process:
 - 1) Cluster logical action groups.
 - 2) Define possible operations: **swap**, **add**, or **remove**.
 - 3) Randomly apply them.

Methodology | Sequence Data Augmentation

- Semi-automatically sequence augmentation process.
- A 3-step process:
 - 1) Cluster logical action groups.
 - 2) Define possible operations: **swap**, **add**, or **remove**.
 - 3) Randomly apply them.

Methodology | Sequence Operations (1)

Methodology | Sequence Operations (2)

Methodology | Sequence Operations (3)

Validation | Experimental Datasets

GTEAGazeGaze+(Fathi et al., 2011)(Fathi et al., 2012)(Li et al., 2015)Image: Comparison of the term of term of

# Videos	21	17	37
# People	4	14	6
# Actions	61 and 71	25 and 40	40
# Activities	7	-	7

Validation | Visual Data Augmentation

Shot Evaluation	Sequence	Splits							
		Subject 1	Subject 2	Subject 3	Subject 4	Subject 5	Subject 6	Average	
Avg. Prediction	Original	55.56	64.09	45.89	62.88	61.9	56.67	57.83	
	Augmented	56.55	65.77	47.58	63.16	63.27	54.17	58.41	
Weighted	Original	54.56	63.76	47.79	62.88	62.59	57.08	58.11	
Avg. Prediction	Augmented	56.94	63.76	49.47	63.16	60.54	54.58	58.08	

GAZE+ Classification Accuracy

Validation | Sequence Data Augmentation

GAZE+ Classification Accuracy

Shot Evolution	Sequence	Splits							
Shot Evaluation		Subject 1	Subject 2	Subject 3	Subject 4	Subject 5	Subject 6	Average	
Avg. Prediction	Original	58.53	64.43	51.37	64.54	64.63	56.25	59.96	
	Augmented	58.33	65.44	51.37	63.99	64.63	55	59.79	
Weighted	Original	58.13	63.42	52.21	63.44	62.59	57.08	59.48	
Avg. Prediction	Augmented	57.74	64.09	52	65.10	63.26	56.67	59.81	

Validation | Comparative Results

Classification Accuracy

Method	GTEA 61*	GTEA 71	GAZE 25*	GAZE 40*	GAZE+	Backbone CNN
CNN Baseline †	54.67	48.95	43.44	40.76	49.83	
Ours (frame level)	68.97	64.74	56.94	47.25	52.75	VGG-16
Ours (1 level LSTM)	69.83	71.04	63.89	49.45	58.41	Simonyan and Zisserman [2014b]
Ours (Hierarchical LSTM)	70.69	72.95	65.28	52.75	59.96	

Temporal Segments Network Wang et al. [2016]	67.76	67.23	-	-	55.25	ResNet-34
LSTA-RGB Sudbakaran et al. [2019b]	74.14	66.16	-	-	-	He et al. [2016]
Ma et al. [2016]	75.8	73.24	62.40	43.42	66.40	CNN-M-2048
						Chatfield et al. [2014]
Sudhakaran and Lanz [2018]	77 59	77	_	_	60 13	
	11.00				00.10	ResNet-34
LSTA						He et al. [2016]
Sudhakaran et al. [2019b]	79.39	78.14	-	-	-	

Conclusions

- Modeling contextual features and their temporal evolution is a promising approach for egocentric activity recognition
- We achieve state of the art results without relying on explicit motion information.