

Lawrence Berkeley National Laboratory

Transfer Learning with Graph Neural Networks for Short-Term Highway Traffic Forecasting

Tanwi Mallick¹, Prasanna Balaprakash¹, Eric Rask¹, Jane Macfarlane²

¹Argonne National Laboratory

²Lawrence Berkeley National Laboratory

ICPR 2020 January 10-15, 2021

Traffic forecasting

8.00 AM ... 9.00AM

9.00 AM ... 10.00AM

Problem: Forecast traffic in absence of location specific network and historical time series data

Transfer learning Diffusion convolutional recurrent neural network (TL-DCRNN)

TL-DCRNN model

Results – LA on SFO

- D-DCRNN and D-TL-DCRNN trained on LA dataset and tested on the LA
- TL-DCRNN and DCRNN – trained on SFO dataset and tested on the LA

TL-DCRNN outperformed DCRNN on LA

Results – SFO on LA

- D-DCRNN and D-TL-DCRNN trained on SFO dataset and tested on the SFO
- TL-DCRNN and DCRNN - trained LA dataset and tested on the SFO

TL-DCRNN outperformed DCRNN on SFO

Comparison with other model

• All models are trained on LA dataset and tested on the PEMS-BAY

Models	MAE	RMSE	MAPE
STGCN [16]	6.53 ± 2.69	10.07 ± 3.47	$13.31 \pm 6.38 \%$
FC-LSTM [4]	4.69 ± 1.79	8.48 ± 3.17	$12.32 \pm 8.78 \%$
GMAN [17]	4.05 ± 1.56	7.57 ± 2.51	$8.5 \pm 4.58 ~\%$
DCRNN [6]	3.3 ± 1.24	6.91 ± 2.19	$8.21 \pm 5.57 \%$
TL-DCRNN	2.13 ± 1.09	5.23 ± 2.29	$5.55 \pm 4.34 \%$

TL-DCRNN outperformed all state-of-the-art traffic forecasting methods in a transfer learning setting

Conclusion and Future Work

- TL-DCRNN outperformed all state-of-the-art traffic forecasting methods
- Allow practitioners to apply data-driven methods trained on datasets collected elsewhere
- Enabling a wide range of transportation system operations operate efficiently in reduced infrastructure and data acquisition cost
- Deployment strategies for traffic management systems across the country
- Extend this approach beyond highway implementations

