

#### A Novel Computer-Aided Diagnostic System for Early Assessment of Hepatocellular Carcinoma

Ahmed Alksas<sup>1</sup>, Mohamed Shehata<sup>1</sup>, Gehad A. Saleh<sup>2</sup>, Ahmed Shaffie<sup>1</sup>, Ahmed Soliman<sup>1</sup>, Mohammed Ghazal<sup>3</sup>, Hadil Abu Khalifeh<sup>3</sup>, Ahmed Abdel Razek<sup>2</sup>, and Ayman El-Baz<sup>1</sup>

<sup>1</sup>BioImaging Lab, Bioengineering Department, University of Louisville, Louisville, KY, USA. <sup>2</sup>Department of Radiology, Faculty of Medicine, University of Mansoura, Egypt. <sup>3</sup>Faculty of Engineering, Abu Dhabi University, Abu Dhabi, UAE.





#### Ahmed AlKsas, M.Sc.

Ph.D. Student @ CECS Department GRA @ BILAB, BE Department Speed School of Engineering, University of Louisville, Louisville, KY 40292 Office: (502) 852-4032 Email: <u>ammost01@louisville.edu</u>

## **ICPR 2020**

#### **Research Motivations**



The blue faery liver cancer association 2020

#### **Research Motivations**

Annual records:

- Worldwide : 800,000 new cases and 700,000 new deaths
- In the USA: 42,030 new cases and 31,780 deaths

At Global Averages:

# 1/5000 People



The blue faery liver cancer association 2020

**HCC** is a cancer arising from the liver cells.

>HCC is the most common primary liver disease, and its incidence is increasing.

➤The prognosis of HCC is affected by its severity level when detected, as curative managements can be enough for early-stage HCC.

Early assessment of liver cancer patients with HCC is of immense importance to provide the proper treatment plan.

#### **Current Diagnostic Tools & Limitations**

- For HCC, a radiological diagnosis (LI-RADS) provides high diagnostic performance and is considered as the Gold-Standard, which makes the medical organizations depend only on highly-experienced radiologists for HCC diagnosis.
- Therefore, there is an urgent need for an automated machine-learning based CAD system to identify HCC and its grade to provide the proper treatment plan.

## **Proposed Framework**



#### Input: CE-MRI Data Collection

- □ A total of 85 patients with high risk of developing HCC without history of loco-regional treatment plan, (M = 61 and F = 24), provided their consent to participate in this study.
- $\Box$  They averaged an age of (55.131 ± 7.12) ranging from 40 to 73 years old.
- □ 34 patients with benign tumors (LR-1 = 17 and LR-2 = 17), 17 with intermediate, and 34 with malignant tumors (LR-4 = 17 and LR-5 = 17)
- □ Acquisition parameters of MRI sequences are defined in the following Table:

| Sequence             | TR<br>(msec.) | TE<br>(msec.) | FOV<br>(mm) | Matrix      | Slice thickness<br>(mm) | Slice gap<br>(mm) | Flip angle |
|----------------------|---------------|---------------|-------------|-------------|-------------------------|-------------------|------------|
| T2                   | >=445         | 26-28         | 230         | 160-144×240 | 6                       | 3                 | NA         |
| T2 SPAIR             | 2500-3000     | 80-100        | 230         | 144×144     | 6                       | 3                 | NA         |
| Dynamic GRE (THRIVE) | 7.3           | 3.1           | 500         | 256×128     | 3                       | 1                 | 40         |

Acquisition parameters of MRI sequences. TR: repetition time; TE: echo time; FOV: field of view; SPAIR: spectral attenuated inversion recovery; GRE: gradient-recalled echo; THRIVE: T1-weighted, high-resolution isotropic volume examination.

### Liver Tumor Preprocessing



#### **Features Extraction: Texture Features**

#### 1<sup>st</sup> Order Texture Features

➢ Here, we extracted texture analysis features from the gray-level histogram of the four 3D constructed objects for each tumor lesion.

➤The computed features are mean, variance, standard deviation, skewness, kurtosis, entropy, cumulative distribution function and gray-level percentiles.



#### Features Extraction: Texture Features (cont'd)



#### Features Extraction: Texture Features (cont'd)



#### **Features Extraction: Functional Features**

Examine the functional hyperenhancement (wash-in) and hypo-intensity (wash-out) developed by the HCC regenerative progressive nodules.



## **Features Extraction: Shape Features**

 $\succ$ In the proposed framework, we used the state-of-the-art spectral analysis employing spherical harmonics (SH) to extract shape features for diagnosing liver tumors.

Malignant



First, we started assessing the classification performance using individual features.

➤Then, we integrated all the extracted features by using concatenation methods obtaining combined features and employed ML classifiers towards the final diagnosis.



| Classifier          | Approach | Accuracy | AUROC<br>(+ve Class) |      |      | Correct Instances |        |      |
|---------------------|----------|----------|----------------------|------|------|-------------------|--------|------|
|                     |          |          | В                    | LR3  | M    | B/34              | LR3/17 | M/34 |
| RFs                 | LOSO     | 87.1%    | 0.95                 | 0.92 | 0.91 | 33                | 11     | 30   |
|                     | 10-Fold  | 85.9%    | 0.93                 | 0.84 | 0.89 | 31                | 12     | 30   |
|                     | 5-Fold   | 81.2%    | 0.88                 | 0.89 | 0.87 | 32                | 9      | 28   |
| KNN <sub>Fine</sub> | LOSO     | 85.9%    | 0.91                 | 0.85 | 0.90 | 31                | 13     | 29   |
|                     | 10-Fold  | 83.5%    | 0.91                 | 0.82 | 0.86 | 30                | 10     | 30   |
|                     | 5-Fold   | 78.8%    | 0.88                 | 0.74 | 0.84 | 31                | 9      | 27   |
| SVM <sub>Cub</sub>  | LOSO     | 81.2%    | 0.89                 | 0.82 | 0.84 | 30                | 12     | 27   |
|                     | 10-Fold  | 77.6%    | 0.85                 | 0.73 | 0.87 | 29                | 9      | 28   |
|                     | 5-Fold   | 77.6%    | 0.85                 | 0.73 | 0.87 | 29                | 9      | 28   |
| $SVM_{Quad}$        | LOSO     | 84.7%    | 0.94                 | 0.89 | 0.89 | 31                | 11     | 30   |
|                     | 10-Fold  | 82.4%    | 0.93                 | 0.81 | 0.85 | 31                | 12     | 27   |
|                     | 5-Fold   | 77.6%    | 0.89                 | 0.80 | 0.85 | 29                | 9      | 28   |

#### **Diagnostic Results**



| Approach | Accuracy   | AUROC  | Correct | Instances |
|----------|------------|--------|---------|-----------|
| L        | R1 vs. LR2 | LR1/17 | LR2/17  |           |
| LOSO     | 91.2%      | 0.95   | 14      | 17        |
| 10-Fold  | 88.2%      | 0.92   | 13      | 17        |
| 5-Fold   | 85.3%      | 0.90   | 12      | 17        |
| L        | R4 vs. LR5 | LR4/17 | LR5/17  |           |
| LOSO     | 85.3%      | 0.88   | 16      | 13        |
| 10-Fold  | 82.4%      | 0.83   | 15      | 13        |
| 5-Fold   | 82.4%      | 0.83   | 15      | 13        |

#### Summary

- The proposed HCC-CAD system has the ability to provide accurate grading for different hepatic observations according to the LI-RADS guidelines.
- Using the Random Forests classifier with a leave-one-out (LOSO) cross-validation, the developed CAD system achieved an 87.1% accuracy in distinguishing between malignant, intermediate and benign tumors (i.e., First stage classification).
- Using the same classifier and validation, the LR-1 lesions were classified from LR-2 benign lesions with 91.2% accuracy, while 85.3% accuracy was achieved differentiating between LR-4 and LR-5 malignant tumors (i.e., Second stage classification).

#### Future work

- We have already started to collect a larger subject cohort to optimize the performance of our system in distinguishing and grading multiple hepatic observations at the same classification stage.
- Hepatic observations with LR-M will be added to our dataset to enhance the diagnostic capabilities of our CAD system.
- Automatic segmentation is being developed to reduce the computational time and subjectivity.
- Applying deep learning techniques (e.g., Autoencoder and CNN).

The University of Louisville

**BioImaging Lab** 

# Thank You & Questions



Email: ammost01@louisville.edu

