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Class Incremental (Cl) Learning
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Prior works
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Castro 2018; Wu
2019; Zhao 2020]
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Our approach: Semi-Supervised Incremental Learning

Class Incremental Data Stream
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Objectives

* Profit from inexpensive unlabeled data to build a large self-
supervised task

» Use the self-supervision as a regularization to alleviate the
Catastrophic Forgetting

 Learn better representations for a more stable
encoder/enhanced performances

* Further reduce the amount of labeled data needed



Our SSIL Framework
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Step 1: reconstruction
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Step 2: adversarial training
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Adversarial loss
p(y)=Cat(y)

y € R¢ with C the number
of clusters for self-supervised
clustering

Adversarial loss
p(z)=N (O, I)



Step 3: supervised classification
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Results: class incremental

TABLE I
COMPARISON OF LATEST AND AVERAGE ACCURACY OF DIFFERENT
CLASS-INCREMENTAL LEARNING METHODS ON MNIST AND STL-10

Method MNIST | STL-10
Latest (%) Average (%)| Latest (%) Average (%)
Oracle 09.4 99.7 || 67.2 73.5
Fine-Tuning 19.8 449 16.2 38.3
60,000 labeled LwF 713 85.2 17.9 125
Naive Rehearsal 93.7 97.6 43.8 62.0
iCaRL 95.3 97.9 42.6 63.0
WA 96.0 98.3 47.3 63.5
Ours® 96.9 98.5 57.3 72.0
2,000 labeled Ours’ (EMNIST.digits)  98.1 99.0
samples Ours” (EMNIST-letters) ~ 95.9 98.5

% Qur standard baseline on MNIST uses EMNIST-full as unlabeled data stream.
b Additional results on MNIST benchmark when using EMNIST-digits and EMNIST-
letters as unlabeled data stream instead of the whole EMNIST.

Memory size: K=400 for MNIST and K=500 for STL-10
Unlabeled dataset leveraged by our SSIL

MNIST: EMNIST (814,255 characters, digits and letters)
STL-10: 100,000 unlabeled images are provided in the dataset

~ STL-10: 500

labeled samples



Results: enhanced representations

2-classes incremental on STL-10

—-= Oracle (87.60%)
Naive Rehearsal (77.70%)
—¥- iCaRL (74.52%)
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Comparison of different rehearsal strategies
initialized with a self-supervised encoder
(pre-trained with RotNet)



Conclusion

« SSIL achieves better performance
« SSIL requires less labeled data

 Self-supervision is an efficient regularization for incremental
learning
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