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Motivation

• Semantic image inpainting refers to the task of restoring

missing parts of a corrupted image using the available data

• Current state-of-the-art deep learning based image inpainting

methods are fully-supervised i.e, require complete images for

learning

• Obtaining large number of complete images is infeasible in

many applications like brain tumor removal in MRI images

• Motivates the need to learn to inpaint images using a dataset

having incomplete images
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Contributions

• We propose a self-supervised framework that can learn to

inpaint in both semi-supervised and fully unsupervised settings

• Our method trained only using incomplete images

outperforms state-of-the-art learning under full supervision

• Our method leads to more stable training as it does away with

adversarial training and density estimation in higher

dimensional spaces
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Idea

• The known regions of an incomplete image can be utilized for

training our DNN (UNet)

• Self-supervised learning: Introduce holes in the incomplete

images and task the DNN to complete the input image

• Higher weight to the training loss on introduced regions as

compared to other known regions
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Training Strategy

The pixels are grouped into three categories: type-A pixels -

originally missing in Y , type-B pixels - present in Y but removed in

Z and type-C - present in Y and left unchanged in Z

The loss is contributed by type-B and type-C pixels. The parameter

α used to weigh the contributions; α = 0.75 found to work best
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Experiments

• We evaluate our method on CelebA face images dataset

• Create incomplete images by introducing corruption in smooth

regions of randomly generated shapes and sizes

• We train our method for different levels of supervision by

varying the fraction of complete images (γ)

• We use structural similarity (SSIM) and relative

root-mean-squared-error (RRMSE) for quantitative evaluation
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Quantitative Results

• Our method’s performance is compared to fully-supervised

inpainting methods like PIC, Shift-Net and VAEAC

Table 1: Results of All Methods Trained on the Entire CelebA

Dataset

Method Data, Training Mode SSIM RRMSE

mean(std.dev.) mean(std.dev.)

Ours γ = 1, Fully Supervised 0.938 (0.019) 0.055 (0.018)

Ours γ = 0, Unsupervised 0.936 (0.019) 0.055 (0.020)

VAEAC γ = 1, Fully Supervised 0.913 (0.024) 0.129 (0.043)

PIC γ = 1, Fully Supervised 0.907 (0.021) 0.085 (0.027)

SNet γ = 1, Fully Supervised 0.891 (0.022) 0.095 (0.029)

DIP Not Applicable 0.885 (0.021) 0.106 (0.031)
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Quantitative Results

Results on varying level of supervision
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Qualitative Results

Varying the level of supervision (percentage of complete images)
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Qualitative - Different Masks

Our model trained unsupervisedly generalizes well across different

mask distributions
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Qualitative - Application
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Summarizing our results

• Our method can leverage incomplete images and produce high

quality inpaintings

• The performance doesn’t drop on decreasing the level of

supervision

• Our method outperforms the state-of-the-art inpainting

algorithms both quantitatively and qualitatively

• It generalizes well across different mask distributions
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Thank You!
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