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Introduction



e Semantic image inpainting refers to the task of restoring
missing parts of a corrupted image using the available data

e Current state-of-the-art deep learning based image inpainting
methods are fully-supervised i.e, require complete images for
learning

e Obtaining large number of complete images is infeasible in
many applications like brain tumor removal in MRI images

e Motivates the need to learn to inpaint images using a dataset
having incomplete images



Contributions

e We propose a self-supervised framework that can learn to
inpaint in both semi-supervised and fully unsupervised settings

e Our method trained only using incomplete images
outperforms state-of-the-art learning under full supervision
e Our method leads to more stable training as it does away with

adversarial training and density estimation in higher
dimensional spaces



Our method



e The known regions of an incomplete image can be utilized for
training our DNN (UNet)

e Self-supervised learning: Introduce holes in the incomplete
images and task the DNN to complete the input image

e Higher weight to the training loss on introduced regions as
compared to other known regions



Training Strategy
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The pixels are grouped into three categories: type-A pixels -

originally missing in Y/, type-B pixels - present in Y but removed in
Z and type-C - present in Y and left unchanged in Z

The loss is contributed by type-B and type-C pixels. The parameter
« used to weigh the contributions; o = 0.75 found to work best



Results



e We evaluate our method on CelebA face images dataset

e Create incomplete images by introducing corruption in smooth
regions of randomly generated shapes and sizes

e We train our method for different levels of supervision by
varying the fraction of complete images ()

e We use structural similarity (SSIM) and relative

root-mean-squared-error (RRMSE) for quantitative evaluation



Quantitative Results

e Our method's performance is compared to fully-supervised
inpainting methods like PIC, Shift-Net and VAEAC

Table 1: Results of All Methods Trained on the Entire CelebA

Dataset
Method|Data, Training Mode SSIM RRMSE
mean(std.dev.)|mean(std.dev.)
Ours |y =1, Fully Supervised| 0.938 (0.019) | 0.055 (0.018)
Ours |y =0, Unsupervised |0.936 (0.019) | 0.055 (0.020)
VAEAC |y = 1, Fully Supervised | 0.913 (0.024) | 0.129 (0.043)
PIC |y =1, Fully Supervised | 0.907 (0.021) | 0.085 (0.027)
SNet |y =1, Fully Supervised | 0.891 (0.022) | 0.095 (0.029)
DIP  |Not Applicable 0.885 (0.021) | 0.106 (0.031)
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Quantitative Results

Results on varying level of supervision
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Qualitative Results

Varying the level of supervision (percentage of complete images)
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Qualitative - Different Masks

Our model trained unsupervisedly generalizes well across different
mask distributions
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Qualitative - Application
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Summarizing our results

e Our method can leverage incomplete images and produce high
quality inpaintings

e The performance doesn't drop on decreasing the level of
supervision

e Our method outperforms the state-of-the-art inpainting
algorithms both quantitatively and qualitatively

e |t generalizes well across different mask distributions
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Thank You!
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