

Learning Image Inpainting from Incomplete Images using Self-Supervision

Sriram Yenamandra, Ansh Khurana, Rohit Jena, Suyash P. Awate

Computer Science and Engineering Department, Indian Institute of Technology Bombay

Introduction

Our method

Results

- Semantic image inpainting refers to the task of restoring missing parts of a corrupted image using the available data
- Current state-of-the-art deep learning based image inpainting methods are fully-supervised i.e, require complete images for learning
- Obtaining large number of complete images is infeasible in many applications like brain tumor removal in MRI images
- Motivates the need to learn to inpaint images using a dataset having incomplete images

- We propose a self-supervised framework that can learn to inpaint in both semi-supervised and fully unsupervised settings
- Our method trained only using incomplete images outperforms state-of-the-art learning under full supervision
- Our method leads to more stable training as it does away with adversarial training and density estimation in higher dimensional spaces

Introduction

Our method

Results

- The known regions of an incomplete image can be utilized for training our DNN (UNet)
- Self-supervised learning: Introduce holes in the incomplete images and task the DNN to complete the input image
- Higher weight to the training loss on introduced regions as compared to other known regions

Training Strategy

The pixels are grouped into three categories: type-A pixels - originally missing in Y, type-B pixels - present in Y but removed in Z and type-C - present in Y and left unchanged in Z

The loss is contributed by type-B and type-C pixels. The parameter α used to weigh the contributions; $\alpha = 0.75$ found to work best

Introduction

Our method

Results

- We evaluate our method on CelebA face images dataset
- Create incomplete images by introducing corruption in smooth regions of randomly generated shapes and sizes
- We train our method for different levels of supervision by varying the fraction of complete images (γ)
- We use structural similarity (SSIM) and relative root-mean-squared-error (RRMSE) for quantitative evaluation

Quantitative Results

• Our method's performance is compared to fully-supervised inpainting methods like PIC, Shift-Net and VAEAC

Table 1: Results of All Methods Trained on the Entire CelebA Dataset

Method	Data, Training Mode	SSIM	RRMSE
		mean(std.dev.)	mean(std.dev.)
Ours	$\gamma=1$, Fully Supervised	0.938 (0.019)	0.055 (0.018)
Ours	$\gamma=$ 0, Unsupervised	0.936 (0.019)	0.055 (0.020)
VAEAC	$\gamma=$ 1, Fully Supervised	0.913 (0.024)	0.129 (0.043)
PIC	$\gamma=$ 1, Fully Supervised	0.907 (0.021)	0.085 (0.027)
SNet	$\gamma=$ 1, Fully Supervised	0.891 (0.022)	0.095 (0.029)
DIP	Not Applicable	0.885 (0.021)	0.106 (0.031)

Quantitative Results

Results on varying level of supervision

Qualitative Results

Varying the level of supervision (percentage of complete images)

Qualitative - Different Masks

Our model trained unsupervisedly generalizes well across different mask distributions

Input Original Ours ($\gamma = 0$) PIC ($\gamma = 1$) VAEAC ($\gamma = 1$) DIP SNet ($\gamma = 1$)

Qualitative - Application

- Our method can leverage incomplete images and produce high quality inpaintings
- The performance doesn't drop on decreasing the level of supervision
- Our method outperforms the state-of-the-art inpainting algorithms both quantitatively and qualitatively
- It generalizes well across different mask distributions

Thank You!