Ghost Target Detection in 3D Radar Data using Point
Cloud based Deep Neural Network
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Existing Work

Model based approaches

« Roos et al. [1] compare measured velocity vector orientation to the orientation of the
vehicle model and a mismatch between the orientations indicates a ghost target

Models can be inaccurate, and not representable of real driving scenarios

Data driven approaches

« Ryu et al. [2] use a fixed traffic control radar and hand-crafted features to train a
multilayer perceptron

» Prophet et al. [3] compare random forest classifiers to support vector machines and k-nn
algorithms

» Garcia et al. [4] use an encoder-decoder deep CNN to detect ghost targets in low
resolution 2D radar data

Current approaches can’t deal with high resolution and 3D radar point clouds

Dataset used
» Measured by an Astyx 6455 HiRes radar sensor, a sample of which is provided by Meyer et
al. [5]




Ground Truth Generation

Why?
* Free datasets with ghost

target annotations are
currently not available

 Manually labelling frames is
very time consuming and
error prone

How?

» Lidar data is projected to 2D
and densified using the
method by Ku et al. [6]

» Radar data projected to 2D
for depth comparison

» Polygon regions are
calculated in 2D based on
radar tolerances

« Radar data with
corresponding lidar depth in
polygon region are
considered real, otherwise
ghost
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1 Truth Generation

data with an overlay of a sample of radar points.
heir depth value, conversely the dark-
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Network Architecture

« Based on the PointNet [7] architecture
* Modifications to accommodate the data

« (Class-balanced loss to counteract
imbalances in data

« Cross validation for evaluation
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Expanded input includes:

« Spherical coordinates

« Vehicle velocity and orientation
Separate input transforms for cartesian
and spherical coordinates

Feed forward of the non-coordinate inputs
to a later stage for higher output
influence
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Evaluation and Results

» The changes introduced to the network significantly improved the results

» The combination of adding spherical coordinate inputs and vehicle state information
caused the biggest improvement

A small additional improvement was seen when adding a skip connection for tighter input-
output correlation

Network __________|mIoU | IoU Ghost | IoU Real F1Ghost

Baseline 61,41% 55,91% 66,90% 71,72%
10 input features 65,13% 58,53% 71,73% /73,84%
10 feats & skip connection 65,38% 58,63% 72,13% 73,92%
7 feats & skip connection 64,52% 57,76% 71,29%  73,23%

+ The baseline network is PointNet with input extended for velocity and reflection magnitude

+ Setup with 10 input features. This network evaluates the importance of using additional input features

» Setup with 10 input and a skip connection. This is the network architecture presented and evaluates the usefulness of the skip connection
s Setup with 7 input and a skip connection. In this architecture we removed the spherical coordinates input to evaluate their importance
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Qualitative Results
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Conclusion

» Presented classification of real and ghost targets in 3D radar data
 Extended the PointNet architecture for the radar detection problem

» Presented an approach for automatic radar data labelling using lidar data
» Showed promising results in complex real measurement scenarios

Future Work

 Temporal information

» Deeper and more complex network architecture
« Improved ego vehicle information
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