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Introduction
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Why Radar?
• Cost effective
• Robust to weather conditions
• Simultaneous velocity and position 

measurement

What is a Real/Ghost Radar Target?
• A real radar measurement is caused by 

direct incident and reflected radio waves.
• A ghost radar measurement is caused by 

multi-path radio waves.
• A multi-path wave is caused by either an 

indirect incident or reflected wave, or 
both.



Existing Work
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Model based approaches
• Roos et al. [1] compare measured velocity vector orientation to the orientation of the 

vehicle model and a mismatch between the orientations indicates a ghost target

Models can be inaccurate, and not representable of real driving scenarios

Data driven approaches
• Ryu et al. [2] use a fixed traffic control radar and hand-crafted features to train a 

multilayer perceptron
• Prophet et al. [3] compare random forest classifiers to support vector machines and k-nn

algorithms
• Garcia et al. [4] use an encoder-decoder deep CNN to detect ghost targets in low 

resolution 2D radar data

Current approaches can’t deal with high resolution and 3D radar point clouds 

Dataset used
• Measured by an Astyx 6455 HiRes radar sensor, a sample of which is provided by Meyer et 

al. [5]



Ground Truth Generation
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Why?
• Free datasets with ghost 

target annotations are 
currently not available

• Manually labelling frames is 
very time consuming and 
error prone

How?
• Lidar data is projected to 2D 

and densified using the 
method by Ku et al. [6] 

• Radar data projected to 2D 
for depth comparison

• Polygon regions are 
calculated in 2D based on 
radar tolerances

• Radar data with 
corresponding lidar depth in 
polygon region are 
considered real, otherwise 
ghost
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Ground Truth Generation
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• The dense depth map calculated based on the lidar data with an overlay of a sample of radar points.
The light-colored squares correspond to real points based on their depth value, conversely the dark-
colored triangles correspond to ghost points
• The 3D perspective showing the real points in blue, coinciding with surfaces detected by the lidar. The
ghost points are in green and can be seen behind lidar surfaces or missing a reference lidar measurement



Network Architecture
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• Based on the PointNet [7] architecture
• Modifications to accommodate the data
• Class-balanced loss to counteract 

imbalances in data
• Cross validation for evaluation

• Expanded input includes:
• Spherical coordinates
• Vehicle velocity and orientation

• Separate input transforms for cartesian 
and spherical coordinates

• Feed forward of the non-coordinate inputs 
to a later stage for higher output 
influence
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Evaluation and Results
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• The changes introduced to the network significantly improved the results
• The combination of adding spherical coordinate inputs and vehicle state information 

caused the biggest improvement
• A small additional improvement was seen when adding a skip connection for tighter input-

output correlation

• The baseline network is PointNet with input extended for velocity and reflection magnitude
• Setup with 10 input features. This network evaluates the importance of using additional input features
• Setup with 10 input and a skip connection. This is the network architecture presented and evaluates the usefulness of the skip connection
• Setup with 7 input and a skip connection. In this architecture we removed the spherical coordinates input to evaluate their importance

Network mIoU IoU Ghost IoU Real F1 Ghost
Baseline 61,41% 55,91% 66,90% 71,72%
10 input features 65,13% 58,53% 71,73% 73,84%
10 feats & skip connection 65,38% 58,63% 72,13% 73,92%
7 feats & skip connection 64,52% 57,76% 71,29% 73,23%



Qualitative Results
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Conclusion

07.12.20Copyright © 2020 Augmented Vision - DFKI 9

• Presented classification of real and ghost targets in 3D radar data
• Extended the PointNet architecture for the radar detection problem
• Presented an approach for automatic radar data labelling using lidar data
• Showed promising results in complex real measurement scenarios

Future Work
• Temporal information
• Deeper and more complex network architecture
• Improved ego vehicle information
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