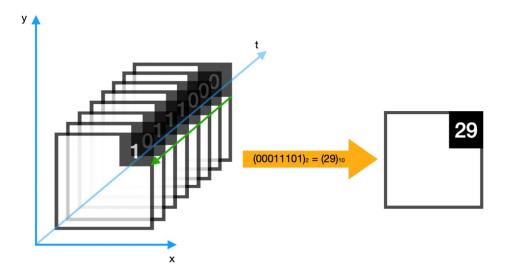


Temporal Binary Representation for Event-Based Action Recognition

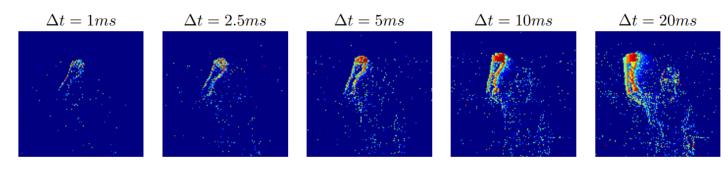
Simone Undri Innocenti, Federico Becattini, Federico Pernici, Alberto Del Bimbo MICC - Università degli Studi di Firenze

firstname.lastname@unifi.it

Introduction


- Event cameras capture illumination changes at extremely fast rates, generating an asynchronous stream of polarized events for each pixel.
- In order to use standard frame-based machine learning approaches, such as Convolutional Neural Networks, events must be aggregated into synchronous frames.

- Most event aggragation strategies lead to a loss of information by temporally quantizing the signal.
- We propose Temporal Binary Representation, a memory efficient event aggregation strategy, lossless up to a configurable temporal scale.


Temporal Binary Representation

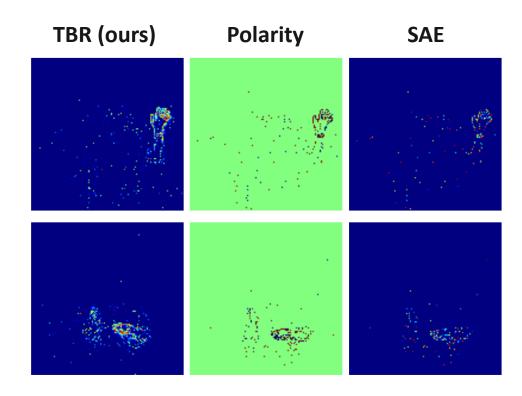
- Given an arbitrarily small accumulation time Δt , we build an intermediate binary representation b^i by checking the presence or absence of an event for each pixel.
- Stacking N temporally consecutive binary representations, each pixel can be considered as a binary string of N digits $[b^0_{x,y} \ b^1_{x,y} \ \dots \ b^{N-1}_{x,y}]$
- We convert the binary string into a decimal number and normalize it dividing it by N

Properties of Temporal Binary Representation

- Each frame covers a timespan of N * Δt
- Memory efficient
 - N separate representations are encoded into a single frame preserving all information
 - Less data to be processed by a Neural Network
- Movement direction directly encoded in the image
 - Recent events have higher values
 - No need to encode event polarity
- Lossless representation up to Δt , which can be chosen arbitrarily small

Action Recognition with Temporal Binary Representation

- We evaluate our approach on the DVS128 Gesture Dataset by training two different models
 - Inception 3D
 - AlexNet + LSTM
- We collect the MICC-EVENT Gesture Dataset to increase the variability of DVS128
 - 640x480 resolution
 - Multiple speed
 - Different scales
 - Different camera orientations
 - Uneven illumination


Results

RESULTS ON THE DVS128 GESTURE DATASET.

	10 classes	11 classes
Time-surfaces [25]	96.59	90.62
SNN eRBP[26]	-	92.70
Slayer [27]	-	93.64
CNN [6]	96.49	94.59
Space-time clouds [28]	97.08	95.32
DECOLLE [29]	-	95.54
Spatiotemporal filt. [3]	-	97.75
RG-CNN [30]	-	97.20
Ours - AlexNet+LSTM	97.50	97.73
Ours - Inception3D	99.58	99.62

RESULTS ON THE DVS128 GESTURE DATASET AND THE MICC-EVENT GESTURE DATASET FOR INCEPTION 3D TRAINED WITH THREE DIFFERENT AGGREGATION STRATEGIES: TBR (OURS), POLARITY [1] AND SAE [36].

	TBR (ours)	Polarity	SAE
DVS128 Gesture Dataset	99.62	98.86	98.11
MICC-Event Gesture Dataset	73.16	68.40	70.13

Conclusions

- TBR is a simple, yet effective, aggregation strategy for event data based on binary intermediate representations.
- Since we losslessly aggregate several multiple representation, we lower the memory footprint while generating more informative representations compared to standard approaches
- State of the art results on the DVS128 Gesture Dataset
- New MICC-EVENT Gesture Dataset collected

Temporal Binary Representation for Event-Based Action Recognition

Simone Undri Innocenti, Federico Becattini, Federico Pernici, Alberto Del Bimbo MICC - Università degli Studi di Firenze

firstname.lastname@unifi.it