LOCAL PROPAGATION FOR FEW-SHOT LEARNING

Yann Lifchitz^{1,2}, Yannis Avrithis¹, Sylvaine Picard²

¹Inria, Univ Rennes, CNRS, IRISA ²Safran

Introduction of the problem

- Classification task
- Very small training set, called support set
- Goal: classifying queries
- Two setting:
 - > Standard: Query seen independently
 - > Transductive: Set of queries to classify

Overview of the method

- Training the embedding network using dense classification¹
- Describing supports and query samples as collections of local features
 - > Spatial attention mechanism
 - > Feature clustering
- Building a graph structure with the labelled and unlabelled local features
- Propagating label information in the graph

Local Features

A pixel in the feature map can be interpreted as a regional descriptor

Spatial attention

- > Discriminative regions have high norm feature vectors
- > A threshold on the I2-norm allow to filter out the background

Feature pooling

- > Reduces redundancy and limit the number of regions
- > For each image, the local features are clustered using k-means clustering
- > Local descriptors are centroid of clusters

PropagationIntroduction

- Graph construction
 - > Vertices: Image samples
 - > Edge values: Cosine Similarity between samples
- Propagation of features (optional)
- Propagation of label
- One prediction per spatial location

Results

- Applies to transductive and nontransductive setting
- Combined with spatial attention and spatial pooling our method is a safe choice
 - > Performs well in the standard setting
 - Efficiently uses unlabelled data in the transductive setting

Thank you for your attention

