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Human Action Recognition

Consists in understanding actions performed by humans based on
a sequence of visual observations.

Various applications:

Smart video surveillance;

Sport video analysis;

Urban planning;

Autonomous robots.

Figure 1: Sample frame from the Collective
Activity dataset [1] with the ground-truth
bounding boxes in green.
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Human Action Recognition Challenges

Human action recognition is challenging in realistic scenes due to:

Various types of elements and contexts;

Intra-class appearance variations;

Different motion speeds;

Occlusions.

Most of existing deep learning-based approaches do not properly
model the temporal information and still represent actions by ran-
domly learned features.
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Proposed Approach

GRAR: a novel pose-based approach for human action recognition.

We consider an explicit attention mechanism that highlights the
representative poses of the action.
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GRAR Model Architecture
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Figure 2: The pipeline of our proposed GRAR model.
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Human Pose Estimation
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Human actions are highly correlated with their corresponding poses:

2D human keypoints.
HRNet.
+ Bounding box refinement.
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Relevant Features Selection
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To integrate the temporal representative information of the
performed action:

Key poses.
Clustering.
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Grid Representation Learning
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To represent actions given discriminative temporal RGB and pose
information:

Grid representation.
Pre-trained CNN.
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Datasets

Collective Activity (CA) dataset [1]

5 action categories (talking, crossing, queuing, waiting and walking).

Collective Activity Extended (CAE) dataset [2]

6 action categories (talking, crossing, queuing, waiting, jogging and
dancing).

Volleyball dataset [3]

9 individual actions (moving, spiking, waiting, blocking, jumping,
setting, falling, digging and standing).
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Results on the CA and CAE datasets

Table 1: Results on the Collective
Activity dataset [1]

Method Accuracy

Choi et al. [2] 70.9%
Tran et al. [4] 78.7%
Ibrahim et al. [3] 81.5%
Deng et al. [5] 81.2%
Shu et al. [6] 87.2%
Qi et al. [7] 89.1%
Zhang et al. [8] 83.8%
Lu et al. [9] 90.6%
Wu et al. [10] 91.0%

GRAR (Ours) 91.5%

Table 2: Results on the Collective
Activity Extended dataset [2]

Method Accuracy

Choi et al. [2] 82.0%
Tran et al. [4] 80.7%
Ibrahim et al. [3] 94.2%
Deng et al. [5] 90.2%
Qi et al. [7] 89.7%
Lu et al. [9] 91.2%
Zhang et al. [8] 96.2%

GRAR (Ours) 97.4%
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Results on the Volleyball dataset

Table 3: Results on the Volleyball dataset [3]

Method Accuracy

Ibrahim et al. [3] 75.9%
Shu et al. [6] 69.0%
Bagautdinov et al. [11] 82.4%
Qi et al. [7] 81.9%
Biswas et al. [12] 76.6%
Wu et al. [10] 83.1%

GRAR (Ours) 82.9%
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Ablation study

Table 4: Impact of different modules on the accuracy of GRAR based on the
CAE dataset.

Model Variants Accuracy

Random 89.2%
Key poses only (K-Pose) 80.5%
Key Frame (K-RGB) 92.3%
Key Frame+Box enhancement (K-RGB+EB) 92.9%
Key Frame+Box enhancement+Pose Attention (K-RGB+EB+PA) 95.2%
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Conclusion

We presented GRAR, a novel pose-based model for human action
recognition.

Our model generalizes well to different scenes.

We effectively deal with action’s periodicity and incorrect human
poses estimation.

The attention-guided by pose successfully handles intra-class action
variations and occlusions challenges.

We exploit powerful CNN architectures designed for image classifi-
cation tasks.
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Thank You!
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