

Improved Deep Classwise Hashing With Centers Similarity Learning for Image Retrieval

Ming Zhang (Presenter) and Hong Yan

Department of Electrical Engineering, City University of Hong Kong

Background

Related works

Our method

Background

Hashing for image retrieval:

Map high dimensional data into lower dimensional binary codes $\{-1,1\}^l$ in Hamming space while preserving the similarity relation in original space

- Extremely fast query speed
- Low storage cost

Deep supervised hashing:

Apply DNNs to integrate features extraction and hashing learning end-to-end

- Pairwise labels-based: DPSH [W.-J. Li et al. AAAI17], DSDH [Q. Li et al. NIPS17] ...
- Triplet labels-based: DTSH [X. Wang et al. ACCV16] ...
- Class labels-based: DCWH [X. Zhe et al. TNNLS20], CSQ [L. Yuan et al. CVPR20]

Background

Related works

Our method

Related Works

- Pairwise/triplet labels-based methods:
 - Tremendous computation cost
 - Time complexity $O(n^2)$
 - Compromise: Sample a portion of data for training
 - Only use the local data structure
 - Hard to capture the global similarity relation

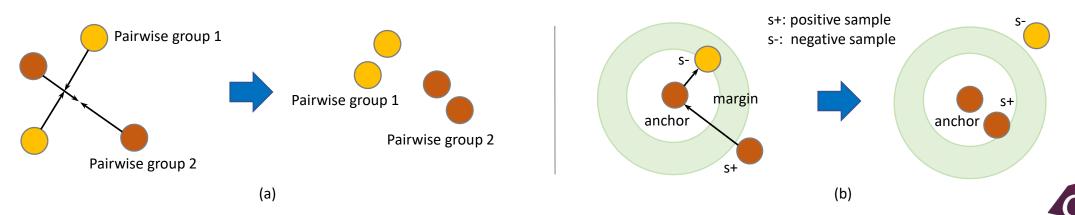


Fig. 1. (a) Pairwise labels-based learning metric (b) Triplet labels-based learning metric

City University of Hona Kona

Related Works

- Deep Classwise Hashing (DCWH)
 - Cross-entropy based normalized Gaussian
 - Minimize the error assigning intra-class samples to the corresponding class center

$$\min_{\Theta,M} L_{clw} = -\sum_{i=1}^{N} \sum_{j=1}^{C} y_{ji} \log \frac{\exp\left\{-\frac{\|h_i - \mu_j\|^2}{2\sigma^2}\right\}}{\sum_{j=1}^{C} \exp\left\{-\frac{\|h_i - \mu_j\|^2}{2\sigma^2}\right\}} \quad s.t. \ h_i = b_i, \quad h_i \in \mathbb{R}^l, \quad b_i = \{-1,1\}^l$$

C Number of class

Number of training samples $\{x_i\}_{i=1}^N$

 y_{ji} Label indicator of j-th class for i-th sample

 x_i Hashing output of x_i

 $\mu_j = \frac{1}{n_i} \sum_{i=1}^N y_{ji} h_i$ j-th class center, updated periodically from the intra-class outputs

Background

Related works

Our method

Motivation

Problem of DCWH:

Samples belonging to different classes but lying far from their corresponding centers are vulnerable to be closer to each other than their intra-class counterparts

Solution:

Increase the Hamming distance between pairwise class centers for more separable inter-class distribution

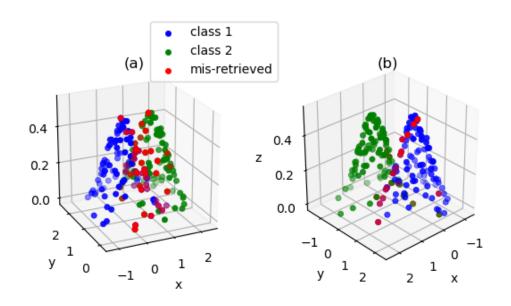


Fig. 2. Draw two-class datapoints from two independent Gaussian distributions with centers/mean: (0,1) and (1,1) in (a), whereas (0,1) and (1,0) in (b).

Improved Classwise Hashing with Center Similarity Loss (IDCWH)

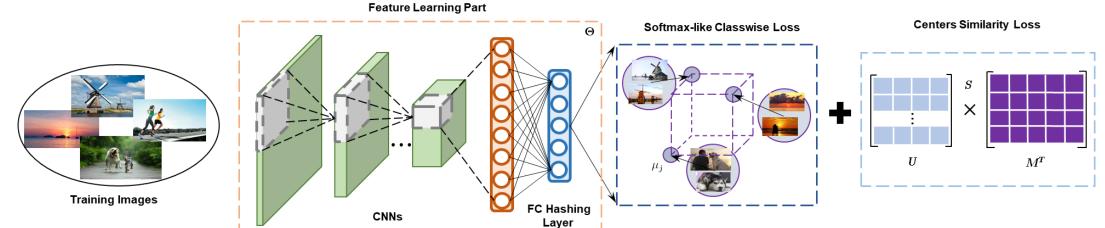


Fig. 3. Illustration of IDCWH.

Θ

$$M = \{\mu_j\}_{j=1}^C$$
$$U = \{u_k\}_{k=1}^Z$$

$$U = \{u_k\}_{k=1}^Z$$

$$s_{ij} = \begin{cases} 1, & y_{u_i}^T y_{\mu_j} = 1 \\ 0, & y_{u_i}^T y_{\mu_j} = 0 \end{cases}$$

Network parameters

Learnable class centers

Estimated binary center of each unique label in a mini-batch

Similarity matrix describing relations between U and M

Two-step Centers Similarity Learning:

a. Intra-class samples clustering:

Estimate each center with binary constraint from intra-class binary codes

$$\min_{u_j} \sum_{i=1}^{N} \sum_{j=1}^{C} y_{ji} \| u_j - b_i \|_2^2 \quad s.t. \ u_j \in \{-1,1\}^l$$

$$u_{j,v} = \mathbf{sgn}(m_j) = \begin{cases} 1, & m_{j,v} \ge 0 \\ -1, & m_{j,v} < 0 \end{cases}$$
 where $m_j = \sum_{k=1}^{n_j} b_{jk}$

• Dynamically attract each class center to concentrate on corresponding intraclass samples

Two-step Centers Similarity Learning:

b. Center-sample concentration and repelling:

$$p(s_{ij}|u_i;\mu_j) = \begin{cases} \sigma(\theta_{ij}), & s_{ij} = 1\\ 1 - \sigma(\theta_{ij}), & s_{ij} = 0 \end{cases}$$

where $\theta_{ij} = 0.5l \cos(u_i, \mu_j)$, $\sigma(\cdot)$ is sigmoid function

$$\min_{M} L_{csl} = -\log \prod_{\substack{i=1,\dots,Z\\j=1,\dots,C}} p(s_{ij}|u_i;\mu_j) = -\sum_{s_{ij}\in S} (s_{ij}\theta_{ij} - \log(1 + e^{\theta_{ij}}))$$

 Minimize the distance between estimated center and learnable class center while maximizing the distance between intra-class samples and centers belonging to other classes

- Relax h_i to be continuous and introduce L_{quant} between $b_i = \mathbf{sgn}(h_i)$ and h_i
- Finalized loss function:

$$\min_{\Theta,M} L_{clw} + \gamma L_{csl} + \beta L_{quant.} =$$

$$-\sum_{i=1}^{N}\sum_{j=1}^{C}y_{ji}\log\frac{exp\{-\frac{\|h_{i}-\mu_{j}\|^{2}}{2\sigma^{2}}\}}{\sum_{j=1}^{C}exp\{-\frac{\|h_{i}-\mu_{j}\|^{2}}{2\sigma^{2}}\}}-\gamma\sum_{s_{ij}\in S}s_{ij}\theta_{ij}-\log(1+e^{\theta_{ij}})+\beta\sum_{i=1}^{N}\|b_{i}-h_{i}\|_{2}^{2}$$

Background

Related works

Our method

ICPR20 25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION Milan, Italy 10 | 15 January 2021

Datasets and Experiments Settings:

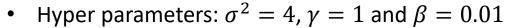
	Dataset	Training	Query	Remarks	
	CIFAR-10 ¹	10 classes; randomly sample 500/class; total 500	Randomly sample 100/class; total 1,000	Mini setting; the rest images are all used as database; Follow the protocol in DPSH	
		Official training split: 5,000/class; total 50,000	Official test split: 1,000/class; total 10,000	Full setting, the training images are used as database	
	CIFAR-100 ²	100 classes; Official training split: 500/class; total 50,000	Official test split: 100/class; total 10,000	Follow the protocol in DCWH	
	MS-COCO ³	Combine 'train2014' and 'val2014'; Randomly sample 10,000	Randomly sample 5,000	Labeled with 80 semantic concepts; The remainder are all used as database; Follow the protocol in HashNet	

¹https://www.cs.toronto.edu/~kriz/cifar.html

²https://www.cs.toronto.edu/~kriz/cifar.html

³https://cocodataset.org/#home

Results on Mean Average Precision (MAP)



- Learning rate: 1e-2 and 5e-3 for feature learning and centers learning, respectively. Decay by 0.1 every 50 epochs
- Train for 150 epochs with batch size fixed to 128

TABLE I
MAP results by Hamming ranking on CIFAR-10 under two experiment protocols

Method	CIFAR-10 (mini)			CIFAR-10 (full)				
2.201100	12 bits	24 bits	32 bits	48 bits	12 bits	24 bits	32 bits	48 bits
SDH+CNN	0.207	0.218	0.223	0.210	0.364	0.433	0.405	0.414
FSDH+CNN	0.196	0.220	0.203	0.212	0.374	0.443	0.410	0.446
DPSH	0.713	0.727	0.744	0.757	0.763	0.781	0.795	0.807
DPSH*	0.797	0.806	0.820	0.802	0.908	0.922	0.925	0.935
DTSH	0.710	0.750	0.765	0.774	0.915	0.923	0.925	0.926
DTSH*	0.790	0.797	0.794	0.775	0.928	0.935	0.940	0.942
DSDH	0.740	0.786	0.801	0.820	0.935	0.940	0.939	0.939
DSDH*	0.800	0.802	0.804	0.808	0.913	0.925	0.943	0.930
DCWH	0.818	0.840	0.848	0.854	0.940	0.950	0.954	0.952
IDCWH	0.828	0.865	0.868	0.849	0.964	0.969	0.967	0.968

TABLE II
MAP RESULTS BY HAMMING RANKING ON CIFAR-100 DATASET

Method	CIFAR-100					
171011101	12 bits	24 bits	32 bits	48 bits		
SDH+CNN	0.0617	0.0624	0.0610	0.0668		
FSDH+CNN	0.0596	0.0618	0.0650	0.0665		
DPSH	0.0597	0.1008	0.1196	0.1587		
DTSH	0.6070	0.7056	0.7122	0.7252		
DSDH	0.0784	0.1495	0.1868	0.2272		
DCWH	0.7227	0.7441	0.7570	0.7658		
IDCWH	0.7642	0.8130	0.8236	0.8351		

TABLE III
- MAP RESULTS BY HAMMING RANKING ON MS-COCO DATASET

Method	MS-COCO					
1.10.11.0.0	16 bits	32 bits	48 bits	64 bits		
DPSH	0.3493	0.3545	0.3595	0.3670		
DSDH	0.3470	0.3587	0.3661	0.3703		
DNNH	0.5932	0.6034	0.6045	0.6099		
DHN	0.6774	0.7013	0.6948	0.6944		
HashNet	0.6873	0.7184	0.7301	0.7362		
DCWH	0.7227	0.7441	0.7570	0.7658		
IDCWH	0.7321	0.7597	0.7636	0.7698		

^{*}Replace the backbone applied in the original works with our employed GoogleNet

ICPR20 25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION Milan, Italy 10 | 15 January 2021

Results on P@H=2, R@H=2, P@N and PR curve

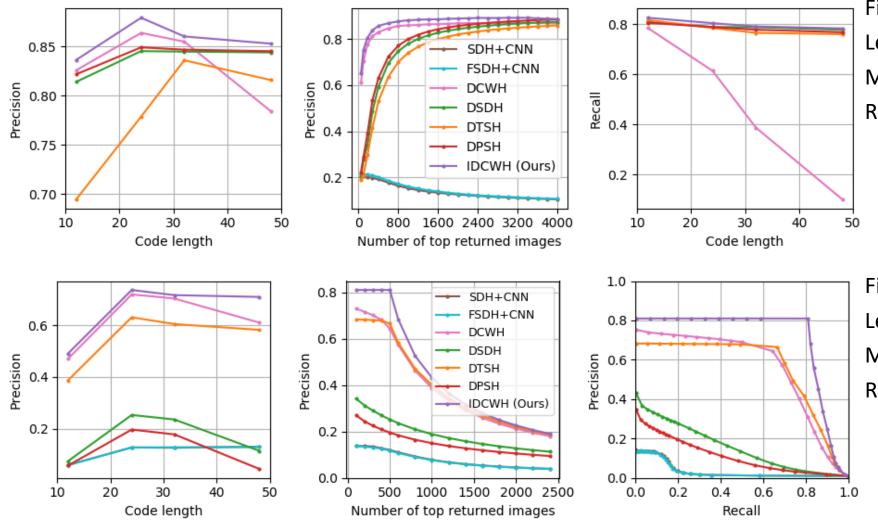


Fig. 4. Results on CIFAR-10 dataset.

Left: P@H=2 w.r.t. different code lengths

Middle: P@N with 32-bit codes

Right: R@H=2 w.r.t. different code lengths

Fig. 5. Results on CIFAR-100 dataset.

Left: P@H=2 w.r.t. different code lengths

City University of Hong Kong

16

Middle: P@N with 48-bit codes

Right: PR-curve with 48-bit codes

ICPR20 25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION Milan, Italy 10 | 15 January 2021

Visualization

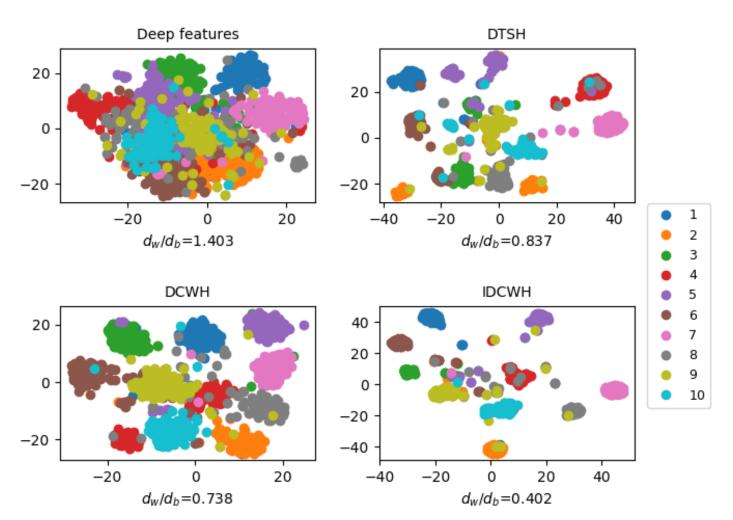


Fig. 6. The t-SNE visualization of hashing codes learned from deep features, DTSH, DCWH and the proposed IDCWH, respectively.

 d_w/d_b represents the ratio of within-class distance and the between-class distance.

Thanks

Q&A

