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Some Notations

Suppose we have observed N input-target pairs as D =
{x,.t,}, where x eR*t €¢{0,1},and n=1,2,---, N.
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Some Notations

Suppose we have observed N input-target pairs as D =
{x,.t,}, where x eR*t €¢{0,1},and n=1,2,---, N.

We limit our attention to a logistic regression model with
parameters weR" defined by

1
1+exp(-w'x.)

y(X,;w) =
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Bayesian Inference

If we assume a zero-mean Gaussian prior with variance 1/ o
over parameters, our posterior distribution

P(W| D, a) = %exp(—M (w)),

where

M (w) =->t, log y(x,;w) + (1—t,) log(1 - y(x,; W)) + %aWTW.
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Bayesian Inference

If we assume a zero-mean Gaussian prior with variance 1/ «
over parameters, our posterior distribution

P(W| D, a) = %exp(—M (w)),

where

M (w) ==>"t, log y(x,;w) + (1—t,) log(1 - y(x,; W)) + %O(WTW.

M (W) ~M (Wo) +VM (Wo)T (W_Wo) "’%(W_WO)T VVM (Wo)(W_Wo)
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Bayesian Inference

If we assume a zero-mean Gaussian prior with variancey / o
over parameters, our posterior distribution

P(W| D, a) = %exp(—M (w)),

where

M (w) =-> "t log y(x,;w) +(1—t,) log(L— y(x,;w)) + %O(WTW.

M (W) ~ VM (Wo \ (W_Wo) "’%(W_)T (W_Wo)
mean inverse of

o e O ) .
normalizing constant covariance matrix
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Entropy of a Gaussian

Entropy of a k -dimensional Gaussian distribution with
covariance matrix Atis

=— (1+ log27) +— Iog(det A”)
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Bayesian Active Learning

If we select change in entropy (S, —Sy.;) as the measure
for information gain, our objective is to select Xy.ithat
gives maximal expected information gain, i.e.

Xy =arg maX(EP(t|x,D)[SN - SN+1])'

xeQ
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Bayesian Active Learning

Therefore, the change in entropy would equal to

AS = % log(1+ m)
where

m= y(XN+1;WMAP)[1_ y(XN+1;WMAP )]X1I\_I+1A|51XN+1'

This term does not depend on t.;, and thus E[AS]=AS.
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Bayesian Active Learning

m= y(XN+1;WMAP)[1_ y(XN+1;WMAP )]X-Il\-|+1A|;1XN+1'

information gain

decision boundary
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Turning Inference into Prediction

To turn inference into prediction, we must take the
expectation of our model output when the parameters
are drawn from the posterior, i.e.

y(X, W)

P(t=1|x,D) = I.P(t =1] x,w)-P(W| D)dw.
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Turning Inference into Prediction

To turn inference into prediction, we must take the
expectation of our model output when the parameters
are drawn from the posterior, i.e.

P(t=1|x, D) :jp(t =1| x,w)P(w| D)dw.

An approximation is given as

1

P(t=1|x,D)=

1+ exp(—wy g, px / \/l + %xTA_lx)

13
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Experiments

Cancer
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Experiments
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Discussions

 All our derivations were under the assumption that our
model is well-matched to the data.

« Bayesian hypothesis testing is through model
comparison:

P(H; | D)oc P(D|H;)P(H;)
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