Tilting at windmills

Data augmentation for deep pose estimation does not help with occlusion

Rafal Pytel

Osman S. Kayhan

Jan C. van Gemert

Delft University of Technology Computer Vision Lab

Challenges: Occlusions

Dense, overlapping person instances

Challenges: Occlusions

Dense, overlapping person instances

Unusual poses with occlusions

How to check robustness to occlusion?

How to check robustness to occlusion?

A: Occlusion Attacks

Keypoint attacks

Occlusion attacks - keypoint level

Original Image

Occluded image (blackout nose)

Introduced occlusion

shifted face keypoint

Sensitivity to keypoint occlusion

Part attacks

Occlusion attacks - part level

Affected area is a minimum box covering all keypoints of part.

Sensitivity to part occlusion

Parts with more keypoints occluded have largest loss in performance.

How can we mitigate occlusion problems?

Occlusion augmentations - Blurring

Original image

Blurring (K)

Blurring (P)

Occlusion augmentations - Cutout

Original image

Cutout (K)

Cutout (P)

Occlusion augmentations - PartMix

PartMix

Another left arm pasted instead of right leg

Do occlusion augmentation help?

Investigated approaches

Evaluation and experiments on two most popular datasets:

- COCO
- MPII

Investigated approaches:

- HRNet
- SimpleBaseline
- HigherHRNet

Do keypoint level augmentations help?

Smaller step in improvement after every extra augmentation

Augmentation	р	mAP
Baseline	-	65.3
Baseline (flip, rot, scale)	-	73.9
Baseline (flip, rot, scale, half body)	-	74.3
Blurring (K)	0.5	74.5
Cutout (K)	0.5	74.5

Do keypoint level augmentations help?

- Smaller step in improvement after every extra augmentation
- Keypoint augmentations improves the performance slightly.

Augmentation	р	mAP
Baseline	-	65.3
Baseline (flip, rot, scale)	-	73.9
Baseline (flip, rot, scale, half body)	-	74.3
Blurring (K)	0.5	74.5
Cutout (K)	0.5	74.5

Do part level augmentations help?

Slight improvement for Cutout (+ 0.2%) and PartMix (+ 0.1%).

Augmentation	р	mAP
Baseline	-	65.3
Baseline (flip, rot, scale)	-	73.9
Baseline (flip, rot, scale, half body)	-	74.3
Blurring (P)	0.5	74.1
Cutout (P)	0.5	74.5
PartMix	0.5	74.4

How does detector influences results?

Using ground truth bounding boxes shows largest improvement.

How does detector influences results?

- Using ground truth bounding boxes shows largest improvement.
- Proposed augmentations do not always improve results.

Do occlusion augmentations bring robustness?

Robustness against occlusion attacks

Proposed augmentations make model slightly more robust.

Robustness against occlusion attacks

- Proposed augmentations make model slightly more robust.
- Data augmentation still do not solve the occlusion problem.

Qualitative examples - good

T. Blurring (K) Ground truth Baseline

Improved prediction after using proposed augmentation

wrist

wrong prediction of left

Qualitative examples - no improvement

Wrong prediction for both baseline and proposed augmentation.

Ground truth

Baseline

T. Blurring (K)

Qualitative examples - deprivation

Ground truth

Baseline

T. Blurring (K)

Wrong annotation of left ankle after training with proposed augmentation

• For COCO dataset head keypoints are vulnerable to keypoint occlusion attacks.

- For COCO dataset head keypoints are vulnerable to keypoint occlusion attacks.
- Occlusions of parts with more keypoints affect overall performance the most.

- For COCO dataset head keypoints are vulnerable to keypoint occlusion attacks.
- Occlusions of parts with more keypoints affect overall performance the most.
- With all the bells and whistles current and proposed augmentation do not bring significant improvement.

- For COCO dataset head keypoints are vulnerable to keypoint occlusion attacks.
- Occlusions of parts with more keypoints affect overall performance the most.
- With all the bells and whistles current and proposed methods do not bring significant improvement.
- Person detectors influence a lot results of top down approaches, varying boost given by augmentation

Tilting at windmills

Data augmentation for deep pose estimation does not help with occlusion

Thank you for your attention!

Official repository:

https://github.com/rpytel1/occlusion-vs-data-augmentations

