
Learning Knowledge-Rich Sequential Model for
Planar Homography Estimation in Aerial Videos

Pu Li and Xiaobai Liu

San Diego State University

Dataset and code available: https://github.com/Paul-LiPu/DeepVideoHomography

https://github.com/Paul-LiPu/DeepVideoHomography


Our task
• Planar Homograph Estimation in Aerial videos



Background

• Homography estimation and Image stitching

Images for the same planar object by different camera position 

transformation between two image

Illustration image from: https://docs.opencv.org/master/d9/dab/tutorial_homography.html
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Related works

• Geometry-based homography estimators
• Feature-based method, e.g., ORB[1] + RANSAC[2]
• Direct pixel-based method, e.g., ECC[3]

• Learning-based homography estimators
• Deep Homography[4]
• Unsupervised deep homography[5]



Limitation of previous works

• The previous works are designed for image pairs, and fail to 
model the temporal or sequential knowledge for homography
estimation tasks. 

• Existing deep network based homography estimators (supervised 
or unsupervised) suffer from overfitting issue.



Our Methods

Sequential Homograph Estimation for Aerial Videos



Our Methods

• Knowledge based regularization terms

• Spatial regularization

• 𝑅𝑝 𝐼 = σ𝑡σ𝑎≠𝑏 ||𝐻𝑎,𝑡,𝑡+1 − 𝐻𝑏,𝑡,𝑡+1||1

• Scale regularization

• 𝑅𝑠 𝐼 = σ𝑡σ<𝑚,𝑛> ||𝐻𝑚,𝑡,𝑡+1 − 𝐻𝑛,𝑡,𝑡+1||1

• Temporal regularization

• 𝑅𝑡1 𝐼 = σ𝑡σ<𝑘,𝑙> ||𝐻𝑘,𝑡,𝑡+1 − 𝐻𝑙,𝑡+1,𝑡+2||1

• 𝑅𝑡2 𝐼 = σ𝑡σ𝑠=𝑡+2
𝑡+𝐾−1σ𝑥∈𝐼𝑡

||𝐼𝑡(𝑥) − 𝐼𝑠(𝐻[𝑡,𝑠] ∙ 𝑥)||1



Experiments: Quantitative Results

MACE performances of different experiments. 

Dataset information
• 22 testing clips (1280 x720 pixels)
• Key points annotated every 30 frames. 



Experiments: Qualitative results

Photometric loss distribution from one thousand pairs of patches in one pair of image.  
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Experiments: Qualitative results

Examples Image stitching result. 
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Experiments: Qualitative results

Visualization of network activation by GradCam[6]. 



Contributions

• We reformulate the homography estimation of aerial videos to be
a sequence-to-sequence task and develop a LSTM network to 
estimate the sequence of homography parameters.

• We employ a set of spatial-scale-temporal knowledge to 
regularize training of the LSTM model and empirically validate its 
superior performance over alternative methods on challenging 
aerial videos.
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