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Contributions

* Propose Dependently Coupled Principal Component Analysis (DC-PCA), to leverage
PCA b/w paired datasets in a dependently coupled manner, which is optimal with
respect to approximation error during training, applicable to broad class of
inversion problems.

* Often, data contains correlated variables where one is observable to some extent from
measurements but other is not observable.

 Existing methods, CCA/PLSR [1,2], maximize correlation/covariance symmetrically b/w
observable & unobservable parts.

* We generate a dependently coupled paired basis by relaxing orthogonality constraints in
decomposing unreliable unobservable measurements.

[1]J. A. Wegelin et al., “A survey of partial least squares (pls) methods, with emphasis on the two-block case,” University of Washington, Tech. Rep, 2000.
[2] H.Hotelling,“Relations between two sets of variates.” Biometrika, vol. 28, no. 3/4, pp. 321-377, 1936.



General Inversion Problems

* Critical concept of raw data D
* Entities quantified by various high dimensional measurements (X) and statistics.
* Dimensions might not be fixed or even finite.

 Computing measurements X directly from D is difficult and expensive.

* Goal of inversion problem is to compute high-dimensional measurement X of raw
data D by leveraging low-dimensional representation A (such as PCA expansion
coefficients).

* |t may be possible to compute A from raw data thus obtaining high-dimensional
measurements X via the inverse PCA transform of A.



Independent (Uncoupled PCA)

e Standard PCA applied independently to paired sets (X and Y), yields subspaces

which minimize the mean squared error (MSE):
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* The MSE is minimized when we choose U and VVas eigenvectors corresponding to
largest eigenvalues of XX Tand YY respectively.

* The optimal coefficients of expansion are orthogonal projection of data onto
respective bases Uand V.

 Uand V fit data independently without capturing correlations.

* If Y is completely unobservable, then we simply cannot use basis I/.



Joint (Symmetrically-Coupled PCA)

* If we allow a single set of expansion coefficients, s.t. the approximations of X and
Y must use same set of coefficients then MSE can be written as:
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 The MSE is minimized when we choose U and VVas eigenvectors corresponding to

largest eigenvalues of [Y] [X]

* This joint PCA model captures the correlations between the two datasets.

* If Y is completely unobservable during fitting, we get the benefit of correlation,
but we don’t fit the observable data X optimally.

* Nor does this pairing maximize the correlation b/w the low-dimensional
representations of Xand Y (as does PLSR)



Dependently Coupled PCA (DC-PCA)

* If again allow a single set of expansion coefficients, A, but impose the standard
PCA basis U, together with coefficients A obtained by minimizing MSE for X:

ex(A, U) Z [xn — Uapl|?

 Now, we may seek a “paired basis” VV (not necessarily orthonormal) that
minimizes the error term below for this choice of U and A:
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* The paired basis I/ that we seek is glven as:
V=YXTUA,

* Ayis the diagonal matrix with the largest eigenvalues of XX 7.



Dependently Coupled PCA (DC-PCA)

* Given a set of expansion coefficients which estimate the observable variable X,
we may obtain an optimal prediction (according to our training) for an
unobservable variable Y by applying the same coefficients to the matching basis
elements in I/(not necessarily orthonormal).

* This combination of traditional PCA for X, and unidirectional correlation analysis
for Y is called Dependently Coupled PCA for the paired data sets.

* The basis V for Y is dependent on the basis U for X, while basis U is completely
independent. In this sense the coupling is purely unidirectional.



Specialty of DC-PCA for Inversion Problems

* PLS methods (PLSR/CCA) only applicable to
prediction problems.

* “Projection of a projection” issue with PLSR
in inversion problems: evolution of a is
driven by the PCA plane.

* Fit a with PCA basis but invert with PLSR basis:

only X..ore (projected from a) contributes to
the inversion.

* Fit and invert with PLSR basis: representation
Xscore(With projection a on the PCA plane) does
not match the PLSR basis for inversion.

(best fit)
PCA basis



DC-PCA vs PLSR: Synthetic Experiment

PLSR-based 2D segmentation (X) # of misidentified voxels (Y): 14,424

X represents 2D cross-section shape and Y a paired
3D teacup shape. 20
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* Low dimensional shape inversion is applied to ideal
noiseless silhouette using both PCA & PLSR basis for
X.
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DC-PCA: Practical Application

* Objective is to segment the Left Ventricle (LV), Right
Ventricle (RV), and Epicardium (EPI) from Cardiac CT
imagery using 3D shape models built from manual
training segmentations [1].

* LV has good contrast, clear boundaries and hence is
easier to segment (observable) compared to RV/EPI
(unobservable).

e Estimate RV (yellow) & EPI (red) using DC-PCA
based on (fitted) LV (blue) shape coefficients.

* DC-PCA does better in estimating unobservable
anatomies (less overshoot in RV compared to
PLSR/CCA/Joint PCA).

[1] N. Dahiya, A. Yezzi, M. Piccinelli, E. Garcia, “Integrated 3D Anatomical Model for

Automatic Segmentation in Cardiac CT Imagery”, Computer Methods in Biomechanics &
Biomedical Imagery, 2019
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(d) DC-PCA DICE scores: RV = 0.75 EPI = 0.93
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Conclusions

* Presented a novel method of leveraging PCA between paired
datasets, in a unidirectional, dependently-coupled manner.

e Optimal with respect to approximation error during training.

 Specially customized for broad class of inversion problems with better
suitability than existing methods.



