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Contributions

• Propose Dependently Coupled Principal Component Analysis (DC-PCA), to leverage 
PCA b/w paired datasets in a dependently coupled manner, which is optimal with 
respect to approximation error during training, applicable to  broad class of 
inversion problems.
• Often, data contains correlated variables where one is observable to some extent from 

measurements but other is not observable.

• Existing methods, CCA/PLSR [1,2], maximize correlation/covariance symmetrically b/w 
observable & unobservable parts.

• We generate a dependently coupled paired basis by relaxing orthogonality constraints in 
decomposing unreliable unobservable measurements.

[1] J. A. Wegelin et al., “A survey of partial least squares (pls) methods, with emphasis on the two-block case,” University of Washington, Tech. Rep, 2000. 
[2] H.Hotelling,“Relations between two sets of variates.” Biometrika, vol. 28, no. 3/4, pp. 321–377, 1936. 
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General Inversion Problems

• Critical concept of raw data 𝐷
• Entities quantified by various high dimensional measurements (𝑋) and statistics.

• Dimensions might not be fixed or even finite.

• Computing measurements 𝑋 directly from 𝐷 is difficult and expensive.

• Goal of inversion problem is to compute high-dimensional measurement 𝑋 of raw 
data 𝐷 by leveraging low-dimensional representation 𝐴 (such as PCA expansion 
coefficients).

• It may be possible to compute 𝐴 from raw data thus obtaining high-dimensional 
measurements 𝑋 via the inverse PCA transform of 𝐴.
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Independent (Uncoupled PCA)
• Standard PCA applied independently to paired sets (𝑋 and 𝑌), yields subspaces 

which minimize the mean squared error (MSE):

• The MSE is minimized when we choose 𝑈 and 𝑉as eigenvectors corresponding to 
largest eigenvalues of 𝑋𝑋𝑇and Y𝑌𝑇respectively.

• The optimal coefficients of expansion are orthogonal projection of data onto 
respective bases 𝑈and 𝑉.

• 𝑈and 𝑉 fit data independently without capturing correlations.

• If 𝑌 is completely unobservable, then we simply cannot use basis 𝑉.
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Joint (Symmetrically-Coupled PCA)
• If we allow a single set of expansion coefficients, s.t. the approximations of 𝑋 and 
𝑌 must use same set of coefficients then MSE can be written as:

• The MSE is minimized when we choose 𝑈 and 𝑉as eigenvectors corresponding to 

largest eigenvalues of 
𝑋
𝑌

𝑋
𝑌

𝑇

.

• This joint PCA model captures the correlations between the two datasets.

• If 𝑌 is completely unobservable during fitting, we get the benefit of correlation, 
but we don’t fit the observable data 𝑋 optimally.

• Nor does this pairing maximize the correlation b/w the low-dimensional 
representations of 𝑋and 𝑌 (as does PLSR)
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Dependently Coupled PCA (DC-PCA)
• If again allow a single set of expansion coefficients, 𝐴, but impose the standard 

PCA basis 𝑈, together with coefficients 𝐴 obtained by minimizing MSE for 𝑋:

• Now, we may seek a “paired basis” 𝑉 (not necessarily orthonormal) that 
minimizes the error term below for this choice of 𝑈 and 𝐴:

• The paired basis 𝑉 that we seek is given as:
𝑉 = 𝑌𝑋𝑇𝑈Λ𝑋

• Λ𝑋is the diagonal matrix with the largest eigenvalues of 𝑋𝑋𝑇.
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Dependently Coupled PCA (DC-PCA)
• Given a set of expansion coefficients which estimate the observable variable 𝑋, 

we may obtain an optimal prediction (according to our training) for an 
unobservable variable 𝑌 by applying the same coefficients to the matching basis 
elements in 𝑉(not necessarily orthonormal).

• This combination of traditional PCA for 𝑋, and unidirectional correlation analysis 
for 𝑌 is called Dependently Coupled PCA for the paired data sets.

• The basis 𝑉 for 𝑌 is dependent on the basis 𝑈 for 𝑋, while basis 𝑈 is completely 
independent. In this sense the coupling is purely unidirectional.
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Specialty of DC-PCA for Inversion Problems

• PLS methods (PLSR/CCA) only applicable to 
prediction problems.

• “Projection of a projection” issue with PLSR 
in inversion problems: evolution of a is 
driven by the PCA plane.
• Fit a with PCA basis but invert with PLSR basis: 

only ෤x𝑠𝑐𝑜𝑟𝑒 (projected from a) contributes to 
the inversion.

• Fit and invert with PLSR basis: representation 
ොx𝑠𝑐𝑜𝑟𝑒(with projection a on the PCA plane) does 
not match the PLSR basis for inversion.
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DC-PCA vs PLSR: Synthetic Experiment

• 𝑋 represents 2D cross-section shape and 𝑌 a paired 
3D teacup shape.

• Low dimensional shape inversion is applied to ideal 
noiseless silhouette using both PCA & PLSR basis for 
𝑋.

• Both methods extract similar shape from raw image 
data (left column images).

• However, the estimated 3D surface (𝑌 estimate) 
from PLSR exhibits higher mismatch against the true 
shape.
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DC-PCA: Practical Application

• Objective is to segment the Left Ventricle (LV), Right 
Ventricle (RV), and Epicardium (EPI) from Cardiac CT 
imagery using 3D shape models built from manual 
training segmentations [1].

• LV has good contrast, clear boundaries and hence is 
easier to segment (observable) compared to RV/EPI 
(unobservable).

• Estimate RV (yellow) & EPI (red) using DC-PCA 
based on (fitted) LV (blue) shape coefficients.

• DC-PCA does better in estimating unobservable 
anatomies (less overshoot in RV compared to 
PLSR/CCA/Joint PCA).

[1] N. Dahiya, A. Yezzi, M. Piccinelli, E. Garcia, “Integrated 3D Anatomical Model for 

Automatic Segmentation in Cardiac CT Imagery”, Computer Methods in Biomechanics & 
Biomedical Imagery, 2019
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Conclusions

• Presented a novel method of leveraging PCA between paired 
datasets, in a unidirectional, dependently-coupled manner.

• Optimal with respect to approximation error during training.

• Specially customized for broad class of inversion problems with better 
suitability than existing methods.
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