Dependently Coupled Principal Component Analysis for Bivariate Inversion Problems

Navdeep Dahiya, ${ }^{1}$ Yifei Fan, ${ }^{1}$ Samuel Bignardi, ${ }^{1}$ Romeil Sandhu, ${ }^{2}$ and Anthony Yezzi ${ }^{1}$
${ }^{1}$ School of Electrical and Computer Engineering, Georgia Institute of Technology
${ }^{2}$ Computer Science Department, Stony Brook University

Contributions

- Propose Dependently Coupled Principal Component Analysis (DC-PCA), to leverage PCA b/w paired datasets in a dependently coupled manner, which is optimal with respect to approximation error during training, applicable to broad class of inversion problems.
- Often, data contains correlated variables where one is observable to some extent from measurements but other is not observable.
- Existing methods, CCA/PLSR [1,2], maximize correlation/covariance symmetrically b/w observable \& unobservable parts.
- We generate a dependently coupled paired basis by relaxing orthogonality constraints in decomposing unreliable unobservable measurements.
[1] J. A. Wegelin et al., "A survey of partial least squares (pls) methods, with emphasis on the two-block case," University of Washington, Tech. Rep, 2000.
[2] H.Hotelling,"Relations between two sets of variates." Biometrika, vol. 28, no. 3/4, pp. 321-377, 1936.

General Inversion Problems

- Critical concept of raw data D
- Entities quantified by various high dimensional measurements (X) and statistics.
- Dimensions might not be fixed or even finite.
- Computing measurements X directly from D is difficult and expensive.
- Goal of inversion problem is to compute high-dimensional measurement X of raw data D by leveraging low-dimensional representation A (such as PCA expansion coefficients).
- It may be possible to compute A from raw data thus obtaining high-dimensional measurements X via the inverse PCA transform of A.

Independent (Uncoupled PCA)

- Standard PCA applied independently to paired sets (X and Y), yields subspaces which minimize the mean squared error (MSE):

$$
\varepsilon(A, U, B, V)=\frac{1}{N} \sum_{n=1}^{N}\|x_{n}-\underbrace{\sum_{l=1}^{L} u a_{l n}}_{U a_{n}}\|^{2}+\|y_{n}-\underbrace{\sum_{l=1}^{L} v_{l} b_{l n}}_{V b_{n}}\|^{2}
$$

- The MSE is minimized when we choose U and V as eigenvectors corresponding to largest eigenvalues of $X X^{T}$ and $Y Y^{T}$ respectively.
- The optimal coefficients of expansion are orthogonal projection of data onto respective bases U and V.
- U and V fit data independently without capturing correlations.
- If Y is completely unobservable, then we simply cannot use basis V.

Joint (Symmetrically-Coupled PCA)

- If we allow a single set of expansion coefficients, s.t. the approximations of X and Y must use same set of coefficients then MSE can be written as:

$$
\varepsilon(A, U, V)=\frac{1}{N} \sum_{n=1}^{N}\left\|\left[\begin{array}{l}
x_{n} \\
\mathrm{y}_{n}
\end{array}\right]-\sum_{l=1}^{L}\left[\begin{array}{l}
u_{l} \\
v_{l}
\end{array}\right] a_{l n}\right\|^{2}
$$

- The MSE is minimized when we choose U and V as eigenvectors corresponding to largest eigenvalues of $\left[\begin{array}{c}X \\ Y\end{array}\right]\left[\begin{array}{c}X \\ Y\end{array}\right]^{T}$.
- This joint PCA model captures the correlations between the two datasets.
- If Y is completely unobservable during fitting, we get the benefit of correlation, but we don't fit the observable data X optimally.
- Nor does this pairing maximize the correlation b / w the low-dimensional representations of X and Y (as does PLSR)

Dependently Coupled PCA (DC-PCA)

- If again allow a single set of expansion coefficients, A, but impose the standard PCA basis U, together with coefficients A obtained by minimizing MSE for X :

$$
\varepsilon_{X}(A, U)=\frac{1}{N} \sum_{n=1}^{N}\left\|x_{n}-U a_{n}\right\|^{2}
$$

- Now, we may seek a "paired basis" V (not necessarily orthonormal) that minimizes the error term below for this choice of U and A :

$$
\varepsilon_{Y}(A, V)=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathrm{y}_{n}-V \mathrm{a}_{n}^{*}\right\|^{2}
$$

- The paired basis V that we seek is given as:

$$
V=Y X^{T} U \Lambda_{X}
$$

- Λ_{X} is the diagonal matrix with the largest eigenvalues of $X X^{T}$.

Dependently Coupled PCA (DC-PCA)

- Given a set of expansion coefficients which estimate the observable variable X, we may obtain an optimal prediction (according to our training) for an unobservable variable Y by applying the same coefficients to the matching basis elements in V (not necessarily orthonormal).
- This combination of traditional PCA for X, and unidirectional correlation analysis for Y is called Dependently Coupled PCA for the paired data sets.
- The basis V for Y is dependent on the basis U for X, while basis U is completely independent. In this sense the coupling is purely unidirectional.

Specialty of DC-PCA for Inversion Problems

- PLS methods (PLSR/CCA) only applicable to prediction problems.
- "Projection of a projection" issue with PLSR in inversion problems: evolution of \mathbf{a} is driven by the PCA plane.
- Fit a with PCA basis but invert with PLSR basis: only $\tilde{\mathrm{x}}_{\text {score }}$ (projected from a) contributes to the inversion.
- Fit and invert with PLSR basis: representation $\widehat{\mathrm{x}}_{\text {score }}$ (with projection a on the PCA plane) does not match the PLSR basis for inversion.

DC-PCA vs PLSR: Synthetic Experiment

- X represents 2D cross-section shape and Y a paired 3D teacup shape.
- Low dimensional shape inversion is applied to ideal noiseless silhouette using both PCA \& PLSR basis for X.
- Both methods extract similar shape from raw image data (left column images).
- However, the estimated 3D surface (Y estimate) from PLSR exhibits higher mismatch against the true shape.

DC-PCA: Practical Application

- Objective is to segment the Left Ventricle (LV), Right Ventricle (RV), and Epicardium (EPI) from Cardiac CT imagery using 3D shape models built from manual training segmentations [1].
- LV has good contrast, clear boundaries and hence is easier to segment (observable) compared to RV/EPI (unobservable).
- Estimate RV (yellow) \& EPI (red) using DC-PCA based on (fitted) LV (blue) shape coefficients.
- DC-PCA does better in estimating unobservable anatomies (less overshoot in RV compared to PLSR/CCA/Joint PCA).
[1] N. Dahiya, A. Yezzi, M. Piccinelli, E. Garcia, "Integrated 3D Anatomical Model for
Automatic Segmentation in Cardiac CT Imagery", Computer Methods in Biomechanics \& Biomedical Imagery, 2019

Conclusions

- Presented a novel method of leveraging PCA between paired datasets, in a unidirectional, dependently-coupled manner.
- Optimal with respect to approximation error during training.
- Specially customized for broad class of inversion problems with better suitability than existing methods.

