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• Patient health data is often collected from a heterogeneous population of 
patients

• Standard survival models focus on average effect of the covariates on survival 
outcomes

• Advances in sensing technology have provided opportunities to further model 
heterogeneity as well as non-linearity of the survival risk. 
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Gaussian Processes for Survival Analysis

• Nonlinear effects? 

• Replace linear effects g(x) with a GP f

• GP-Cox

• GP-AFT survival model

• but, like AFT, 𝛽 is assumed to be constant and does not depend on co-variates 

• restrictive assumption on shape parameter in heterogenous datasets
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Heterogeneity in GP’s

• Data partitioning approaches
• Ex. Bayesian treed partitioning, Voronoi tessellations etc. 

• Trees or more complex structures used for partitioning & 
modelling heterogeneity

• Fully probabilistic and computationally demanding

• Do not address nonlinear survival models such as GP-AFT.
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GPSRL: Model 

• Pre-mine:   , a rule set containing rules 

• Construct:  an ordered rule list of size m

• Fit a GP-AFT model at each partition 

• Latent GP to model non-linearities
• Ordered rule lists to model heterogeneity
• Relaxes assumption on shape parameter, β
• Rule lists strike a balance between greedy 

and optimal data partitioning 
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• Log-logistic likelihood 

• Marginal likelihood
• Likelihood is not conjugate-Gaussian

• Laplace approximation  

Approx. marginal 
likelihood 



GPSRL: MCMC sampling

• Initial random list: 



GPSRL: MCMC sampling

• Initial random list: 

• At step t in the sequence:

• Proposal distribution:



GPSRL: MCMC sampling

• Initial random list: 

• At step t in the sequence:

• Proposal distribution:

• Acceptance probability: 



GPSRL: MCMC sampling

• Initial random list: 

• At step t in the sequence:

• Proposal distribution:

• Acceptance probability: 

• MCMC sequence  
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Summary

• Gaussian Process Survival Rule Lists (GPSRL) to model heterogeneity in survival 
data-sets 

• Semi-parametric Bayesian framework to partition the data into subsets with 
different survival characteristics.

• Addresses some limitations of standard survival Gaussian process models 

• Interpretability in the form of rules

• Performance evaluations demonstrate the effectiveness of our model



Thank You!



Synthetic data simulation 

• Simulated a heterogeneous survival dataset of size N = 1000, P = 4

• Event times sampled from log-logistic (LL) distribution


