A Flatter Loss for Bias Mitigation in **Cross-dataset Facial Age Estimation**

Ali Akbari, Muhammad Awais, Zhenhua Feng, Ammarah Farooq and Josef Kittler

Research Fellow Centre for Vision, Speech and Signal Processing (CVSSP) University of Surrey Guildford, UK

25th International Conference on Pattern Recognition January, 2021

1 Age estimation Algorithms

2 The proposed Method

Age estimation Algorithms

The proposed Method

Numerical Results

Conclusion and Future Work

1 Age estimation Algorithms

2 The proposed Method

3 Numerical Results

Age estimation Algorithms

The proposed Method

Numerical Results

Conclusion and Future Work

Age Estimation Problem

Age estimation is the prediction of a persons age based on biometric features extracted from the face.

Semantic Similarity

There is semantic similarity between features of adjacent ages. This semantic information should be reflected into the training algorithm.

Age estimation Algorithms

The proposed Method

Numerical Results

Conclusion and Future Work

Age estimation methods:

- Regression: Scalar labels
- Classification: 0/1 labels
- Ranking: Ensemble of binary classifiers
- Label Distribution Learning: Label distribution

Age estimation Algorithms

The proposed Method

Numerical Results

Conclusion and Future Work

Age estimation Algorithms

2 The proposed Method

3 Numerical Results

The proposed Method

Numerical Results

Conclusion and Future Work

Age estimation problem as distribution learning problem

- Due to the similarity between neighbouring ages, a scalar age label is encoded as a label distribution (a set of description degrees) .
- Sum of all description degrees equal to 1.
- The maximum degree is assigned to the corresponding age.

Label distribution for a facial image at the age of 25

LDL based Age estimation System

Age estimation Algorithms

The proposed Method

Numerical Results

Conclusion and Future Work

Distribution learning

Loss Functions

Age estimation Algorithms

The proposed Method

Numerical Results

Conclusion and Future Work

Existing Loss Function

Kullback-Leibler divergence (KL)

$$L(\mathbf{p}, \mathbf{q}) = \sum_{k=1}^{L} q_k \log(\frac{q_k}{p_k})$$

Distribution Cognisant Loss (DC-v1)

$$L(\mathbf{p},\mathbf{q}) = \log(1 - \alpha(1 - \sum_{k=1}^{L} \sqrt{p_k q_k})) / \log(1 - \alpha) \quad 0 < \alpha < 1$$

Distribution Cognisant Loss (DC-v2)

$$L(\mathbf{p},\mathbf{q}) = \sum_{k=1}^{L} \left| q_k^{\alpha} - p_k^{\alpha} \right|^{\frac{1}{\alpha}} = \sum_{k=1}^{L} q^k \left| 1 - (\frac{p_k}{q_k})^{\alpha} \right|^{\frac{1}{\alpha}} \quad 0 \le \alpha \le 1$$

The proposed Method

Numerical Results

Conclusion and Future Work

Main Property

The smoother loss surface provides a better generalisation for the output model trained by that loss function.

Figure: Behaviour of gradient of the KL loss and the proposed DC loss.

Intuitive Analysis

Age estimation Algorithms

The proposed Method

Numerical Results

Conclusion and Future Work

Flat Minimum Sharp Minimum

Main Result

It is well known that the flat minimum could help to improve the generalisation capability.

Age estimation Algorithms

The proposed Method

Numerical Results

Conclusion and Future Work Age estimation Algorithms

2 The proposed Method

The proposed Method

Numerical Results

Conclusion and Future Work

Train Database

• Our BAG: 200,123 images, crawled from Internet

Test Databases

- FGNET: Images with different lighting condition
- MORPH: Four ethnicities
- FACES: Six expressions
- SC-ROT: Images with different pose
- SC-SUR: Images with different quality

Architecture

VGG16

Evaluation

• Cross database evaluation

Numerical Results

Age estimation Algorithms

The proposed Method

Numerical Results

Conclusion and Future Work

Cross-database Evaluation (MAE & CS) on the Target Databases

	FG-NET		MORPH		FACES		SC-FACE		Average	
Method	MAE	CS(%)	MAE	CS(%)	MAE	CS(%)	MAE	CS(%)	MAE	CS(%)
Human	4.70	69.5	6.30	51.0	NA	NA	NA	NA	5.50	60.25
Microsoft	6.20	53.80	6.59	46.00	-	-	-	-	6.39	49.90
DEX	3.57	78.94	6.54	53.38	6.59	50.83	6.19	65.05	5.86	59.50
AGEn	3.53	79.78	6.40	53.97	6.34	52.40	6.12	65.21	5.72	60.60
DLDL	3.24	81.54	6.01	57.36	6.11	55.60	6.52	60.64	5.55	61.98
CE-MV	3.34	80.44	6.22	55.60	6.25	54.63	6.23	64.38	5.62	61.84
DLDL-v2	3.35	81.44	5.80	57.30	5.92	56.68	6.52	61.61	5.48	62.77
Proposed	3.26	81.57	5.69	58.83	5.92	57.45	5.41	67.90	5.07	66.43

Effect of Ethnicity on Age Estimation

Age estimation Algorithms

The proposed Method

Numerical Results

Conclusion and Future Work

MAEs and CS Scores with Respect to Ethnicity

	Mic	rosoft		KL	DC		
Ethnicity	MAE	CS (%)	MAE	CS (%)	MAE	CS (%)	
European	6.59	46.22	4.59	68.44	4.60	68.64	
African	7.21	42.32	5.45	58.92	4.96	64.80	
Indian	8.40	36.89	7.60	46.35	6.95	48.91	
Chinese	10.12	33.56	8.56	43.35	7.50	47.81	

Conclusion and Future Work

Age estimation Algorithms

Conclusion and Future Work

Age estimation Algorithms

The proposed Method

Numerical Results

Conclusion and Future Work

Conclusion

- The effect of loss function on the generalisation performance of a DNN model
- The smoother loss surface provides a better generalisation for the output model
- Age estimation problem

Future work

 Extending our framework to other applications, pose estimation and segmentation

The proposed Method

Numerical Results

Conclusion and Future Work

Thank You!