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Age estimation Algorithms

Age Estimation Problem

Age estimation is the prediction of a persons age based on biometric
features extracted from the face.

Semantic Similarity

There is semantic similarity between features of adjacent ages. This
semantic information should be reflected into the training algorithm.
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Age Estimation Algorithms

Age estimation methods:

Regression: Scalar labels

Classification: 0/1 labels

Ranking: Ensemble of binary classifiers

Label Distribution Learning: Label distribution
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Label Distribution Learning

Age estimation problem as distribution learning problem

Due to the similarity between neighbouring ages, a scalar age
label is encoded as a label distribution (a set of description
degrees) .

Sum of all description degrees equal to 1.

The maximum degree is assigned to the corresponding age.

15 20 25 30 35

Label distribution for a facial image at the age of 25
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LDL based Age estimation System
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Loss Functions

Existing Loss Function

Kullback-Leibler divergence (KL)

L(p, q) =

L∑
k=1

qk log(
qk
pk

)

Distribution Cognisant Loss (DC-v1)

L(p, q) = log(1− α(1−
∑L

k=1

√
pkqk))/ log(1− α) 0 < α < 1

Distribution Cognisant Loss (DC-v2)

L(p, q) =

L∑
k=1

|qαk − pαk |
1
α =

L∑
k=1

qk
∣∣∣∣1− (

pk
qk

)α
∣∣∣∣ 1
α

0 ≤ α ≤ 1
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Theoretical Results

Main Property

The smoother loss surface provides a better generalisation for the
output model trained by that loss function.
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Figure: Behaviour of gradient of the KL loss and the proposed DC loss.
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Intuitive Analysis

A Conceptual Sketch of Flat and Sharp Minima.

Main Result

It is well known that the flat minimum could help to improve the
generalisation capability.
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Evaluation Settings

Train Database

Our BAG: 200, 123 images, crawled from Internet

Test Databases

FGNET: Images with different lighting condition

MORPH: Four ethnicities

FACES: Six expressions

SC-ROT: Images with different pose

SC-SUR: Images with different quality

Architecture

VGG16

Evaluation

Cross database evaluation
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Numerical Results

Cross-database Evaluation (MAE & CS) on the Target
Databases

FG-NET MORPH FACES SC-FACE Average
Method MAE CS(%) MAE CS(%) MAE CS(%) MAE CS(%) MAE CS(%)
Human 4.70 69.5 6.30 51.0 NA NA NA NA 5.50 60.25
Microsoft 6.20 53.80 6.59 46.00 - - - - 6.39 49.90
DEX 3.57 78.94 6.54 53.38 6.59 50.83 6.19 65.05 5.86 59.50
AGEn 3.53 79.78 6.40 53.97 6.34 52.40 6.12 65.21 5.72 60.60
DLDL 3.24 81.54 6.01 57.36 6.11 55.60 6.52 60.64 5.55 61.98
CE-MV 3.34 80.44 6.22 55.60 6.25 54.63 6.23 64.38 5.62 61.84
DLDL-v2 3.35 81.44 5.80 57.30 5.92 56.68 6.52 61.61 5.48 62.77
Proposed 3.26 81.57 5.69 58.83 5.92 57.45 5.41 67.90 5.07 66.43
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Effect of Ethnicity on Age Estimation

MAEs and CS Scores with Respect to Ethnicity

Microsoft KL DC

Ethnicity MAE CS (%) MAE CS (%) MAE CS (%)

European 6.59 46.22 4.59 68.44 4.60 68.64

African 7.21 42.32 5.45 58.92 4.96 64.80

Indian 8.40 36.89 7.60 46.35 6.95 48.91

Chinese 10.12 33.56 8.56 43.35 7.50 47.81
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Conclusion

The effect of loss function on the generalisation performance of
a DNN model

The smoother loss surface provides a better generalisation for
the output model

Age estimation problem

Future work

1 Extending our framework to other applications, pose estimation
and segmentation
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