

A Novel Adaptive Minority Oversampling Technique for Improved Classification in Data Imbalanced Scenarios

Ayush Tripathi, Rupayan Chakraborty, Sunil Kumar Kopparapu

ICPR - 2020, Milan, Italy 10-15 January, 2021

Introduction

©2020

Class Imbalance

- ▶ Number of samples corresponding to each class is not proportionate.
- Minority class is underrepresented i.e. it has fewer samples compared to the majority class.
- Performance of conventional classifiers tends to get biased towards the majority class.
- ▶ Real-world Applications :
 - ✤ fraud detection
 - \star network intrusion detection
 - disease diagnosis
 - \star software defect detection
 - \leftarrow bioinformatics

Prevalent Techniques

©2020

Resampling Techniques

- ▶ Re-balance the sample space.
 - ★ Oversampling : Generate minority class samples SMOTE, ROS, ADASYN etc.
 - \star Undersampling : Discard majority class samples.
 - \star Hybrid Sampling : Use a combination of oversampling and undersampling.

Cost Sensitive Learning

• Assign higher misclassification cost to minority class samples compared to the majority class samples.

Ensemble based classifiers

• Use a combination of multiple base classifiers.

Motivation

Requirements

- Mitigate the woes of class imbalance.
- ▶ Ensure that the minority samples are diverse enough to maintain the original data distribution.

Proposed Algorithm

- ▶ Local distribution characteristics of the data are often ignored during the oversampling process. So, propose an algorithm that makes use of the local distribution of the data.
- ▶ 2 step approach is used i.e. oversampling followed by an undersampling.
- ▶ Conventional SMOTE is used for oversampling.
- ▶ Probability density estimation based undersampling.

Proposed Algorithm

 $\odot 2020$

Step 1 : Sample Generation

- ▶ Preliminary step : Identical to SMOTE oversampling technique.
- ▶ Given N minority and M majority class instances, obtain an intermediate oversampled distribution consisting of \hat{N}_1 additional minority samples.

Step 2 : GMM Clustering

▶ The minority distribution consisting of $(N + \hat{N}_1)$ samples are clustered into C clusters using a Gaussian-Mixture Model (**GMM**) based clustering algorithm.

Proposed Algorithm

Step 3 : Adaptive Sample Selection

- ▶ The majority sample distribution is employed to adaptively select M N samples from the generated \hat{N}_1 minority samples.
- ▶ Compute the number of majority class samples (q_i) for which $p(m_j \in C_i | M)$ exceeds the probability threshold (p_t) .
- ▶ Cluster weight is defined as

$$w_i = \begin{cases} (1 - \frac{q_i}{M}), & \text{if } w_i > w_t \\ 0, & \text{otherwise} \end{cases}$$

Select N_i points belonging to the synthetically generated samples \hat{N}_1 lying in the i^{th} cluster.

$$N_i = \left((M - N) \times \frac{w_i}{\sum_{i=1}^C w_i} \right)$$

©2020

Results: F_1 Scores obtained using the proposed approach

Classification Task	F_1 Score
Pima	0.6727 ± 0.0023
Glass0	0.7530 ± 0.0025
Vehicle0	0.9498 ± 0.0004
Ecoli1	0.8261 ± 0.0046
Yeast3	0.7591 ± 0.0020
Pageblock	0.9600 ± 0.0063
Glass5	0.6666 ± 0.1333
Yeast5	0.6853 ± 0.0040
Yeast6	0.5219 ± 0.0107
Abalone	0.0688 ± 0.0002
Anger-Anxiety	0.9501 ± 0.0002
Anger-Disgust	0.8952 ± 0.0021
Anger-Happy	0.7338 ± 0.0027
Anger-Sad	0.9913 ± 0.0003
Anxiety-Disgust	0.8570 ± 0.0064
Boredom-Disgust	0.8978 ± 0.0006
Happy-Disgust	0.9210 ± 0.0020
Neutral-Anger	0.9353 ± 0.0021
Neutral-Disgust	0.8646 ± 0.0003
Sad-Disgust	0.9632 ± 0.0024
AD-MCI	0.5773 ± 0.0081
HC-MCI	0.6220 ± 0.0033
04clover5z-600-5-70-BI	0.5268 ± 0.0041
04clover5z-600-5-60-BI	0.5414 ± 0.0017
04clover5z-600-5-50-BI	0.5493 ± 0.0024
04clover5z-600-5-30-BI	0.5419 ± 0.0003
04clover5z-600-5-0-BI	0.5674 ± 0.0004

Results: F_2 Scores obtained using the proposed approach

Classification Task	F_2 Score
Pima	0.6892 ± 0.0032
Glass0	0.8267 ± 0.0024
Vehicle0	0.9734 ± 0.0002
Ecoli1	0.8588 ± 0.0061
Yeast3	0.7986 ± 0.0003
Pageblock	0.9428 ± 0.0130
Glass5	0.6222 ± 0.1362
Yeast5	0.8004 ± 0.0027
Yeast6	0.6350 ± 0.0049
Abalone	0.1465 ± 0.0011
Anger-Anxiety	0.9532 ± 0.0004
Anger-Disgust	0.8669 ± 0.0064
Anger-Happy	0.7071 ± 0.0073
Anger-Sad	0.9864 ± 0.0007
Anxiety-Disgust	0.8124 ± 0.0091
Boredom-Disgust	0.8774 ± 0.0032
Happy-Disgust	0.9027 ± 0.0050
Neutral-Anger	0.9287 ± 0.0037
Neutral-Disgust	0.8405 ± 0.0010
Sad-Disgust	0.9446 ± 0.0055
AD-MCI	0.5563 ± 0.0087
HC-MCI	0.6003 ± 0.0053
04clover5z-600-5-70-BI	0.6577 ± 0.0080
04clover5z-600-5-60-BI	0.7141 ± 0.0023
04clover5z-600-5-50-BI	0.7285 ± 0.0033
04clover5z-600-5-30-BI	0.7153 ± 0.0005
04clover5z-600-5-0-BI	0.7478 ± 0.0007

Summary

 $\odot 2020$

- ▶ A three step hybrid sampling technique that adaptively selects specific data points during the process of oversampling is proposed.
- ▶ The local distribution characteristics of the data has been given due importance in the process of oversampling.
- ▶ By the proposed technique, we obtain:
 - \bigstar A balanced representation of the data distribution.
 - \star The synthetically generated samples are adequately diverse and representative of the original distribution.
- ▶ The efficacy of proposed algorithm has been validated on 27 binary classification tasks with varying imbalance ratios.

Thank You

A Novel Adaptive Minority Oversampling Technique for Improved Classification in Data Imbalanced Scenarios

Ayush Tripathi, Rupayan Chakraborty, Sunil Kumar Kopparapu

ICPR - 2020, Milan, Italy 10-15 January, 2021

