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Mutual Information

Definition
Mutual information (MI) between
two random variables X and Y ,
denoted by I(X;Y ) is defined as:

I(X;Y ) =

∫
X×Y

log
dPXY

dPX ⊗ PY
dPX,Y

Where, PXY is the joint
probability distribution and, PX
and PY are the corresponding
marginal distributions.

• Mutual information is a
fundamental information
theoretic measure that
quantifies the dependency
between two random
variables

• Mutual information, I(X;Y )
between any two RVs ranges
from 0 to +∞. I(X;Y ) is
high when X and Y share
considerable information or in
other words have a high
degree of dependency and
vice-versa. It is equal to zero
iff X and Y are mutually
independent.
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Applications of Mutual Information

Mutual information maximization is used in:

• Calculating channel capacity in information theory

• Independent Component Analysis

• Representation learning

• Generative modeling

• Information bottleneck
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Mutual Information Estimation

• When the distribution of both the RVs are available, MI can be
directly computed using integration.

• This is not possible in real world scenarios where we have access
only to samples from the distributions.

• Classical non-parametric MI estimators that used methods like
binning, kernel density estimation and K-Nearest Neighbour
based entropy estimation are computationally expensive,
produce unreliable estimates, and do not conform to mini-batch
based optimisation strategies.
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Mutual Information Estimation

• Recent estimation methods couple neural networks with
variational lower bounds of MI (Nguyen, Wainwright, and
Jordan 2010; Donsker and Varadhan 1983) for differential and
tractable estimation of MI.

• A critic parameterized as a neural network is trained to
approximate unknown density ratios. The approximated density
ratios are used to estimate different variational lower bounds of
MI.

• These methods consider universal approximation property of the
critic neural network to estimate tighter variational lower
bounds of MI.
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Mutual Information Estimation

• However, universal approximation ability of neural networks
comes at the cost of neglecting the effect of critic’s unbounded
complexity on variational estimation of mutul information,
which leads to unstable and highly fluctuating estimates.
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Our Contributions

• We argue that these variational lower bound estimators exhibit
high sensitivity to the complexity of critic’s (Neural Network)
hypothesis space when optimised using mini-batch stochastic
gradient strategy.

• We use a data-driven measure of hypothesis space complexity
called Rademacher complexity to bound the generalization error
for variational lower bounds of MI. Using these bounds, it is
shown that higher complexity of critic’s hypothesis space leads
to higher generalization error and hence high variance estimates.

• We construct critic’s hypothesis space in a smooth family of
functions, the Reproducing Kernel Hilbert Space (RKHS). This
corresponds to learning a kernel using Automated Spectral
Kernel Learning (ASKL) (Li, Liu, and Wang 2019)
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Variational Estimates of Mutual Information

• Parametric probability distribution or critic fθ with trainable
parameters θ is optimised to approximate the likelihood density
ratio between the joint and product of marginal distributions
(dPXY /dPX ⊗ PY ). The approximated density ratio is used for
sample based estimation of MI.
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Variational Estimates of Mutual Information

IMINE and INWJ lower bounds can be derived from Tractable
Unnormalized Barber and Argakov (TUBA) lower bound, ITUBA,
considering only constant positive baseline in (Poole et al. 2018),
that is a > 0 in the ITUBA formulation defined as:

I(X;Y ) ≥ ITUBA (fθ) = EPXY [fθ(x, y)]− EPX⊗PY
[
efθ(x,y)

]
a

−log(a) + 1 (1)

IMINE is formulated from ITUBA by fixing the parameter a in the
above equation as exponential moving average of efθ(x,y) across
mini-batches. Similarly, INWJ is formulated from ITUBA by
substituting the parameter a = e.
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Variational Estimates of Mutual Information

For IJS(Poole et al. 2018) and ISMILE(Song and Ermon 2019)
estimates, density ratio is estimated by maximizing GAN
discriminator objective defined as:

max
θ

EPXY [log (σ(fθ(x, y)))] + EPX×PY [log (1− σ(fθ(x, y)))] (2)

IJS is obtained by plugging in f∗GAN + 1 into INWJ lower bound,
where f∗GAN is the optimal critic from GAN optimization. ISMILE is
obtained by plugging in f∗GAN in Donsker-Vardhan variational lower
bound (Donsker and Varadhan 1983), IDV , given by:

I(X;Y ) ≥ IDV (fθ) = EPXY [fθ(x, y)]− log
(
EPX⊗PY

[
efθ(x,y)

])
(3)
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Automated Spectral Kernel Learning

Feature mapping, φ (x), of a reproducing kernel Hilbert space
(RKHS) corresponding to a non-stationary kernel can be represented
as following (Li, Liu, and Wang 2019):

φ(x) =
1√
2D

[cos(Ωᵀx+ b) + cos(Ω′ᵀx+ b′)] (4)

b and b′ are vectors of D uniform samples

{bi}Di=1, {b′i}Di=1
iid∼ U [0, 2π], and Ω = [ω1, . . . , ωD] and

Ω′ = [ω′1, . . . , ω
′
D] are optimized during the training procedure. Any

function f in the RKHS corresponding to φ (x) can be represented
by f (x) = wφ (x), where w is D dimensional vector that is learned
during training. Critics in this work are restricted to RKHS by using
the above form.
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Automated Spectral Kernel Learning

φ1

φD

x1

x2

xd

input
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1x+ b)
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1 x+ b′)

+ × 1√
2D
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Dx+ b′)

cos(ωᵀ
Dx+ b)

+ × 1√
2D

Feature mapping φ(x)

w1

wD

w

f(x)

f(x) = wᵀφ(x)
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Theoretical Guarantees

Given n i.i.d samples, {xi, yi}ni=0 from joint distribution PXY and m
i.i.d samples, {x′i, y′i}mi=0 from the product of marginal distributions
PX ⊗ PY empirical approximations of variational lower bounds of MI
are defined as:

În,mTUBA (fθ, S) = EPnXY [fθ (x, y)]−
EPmX⊗P

m
Y

[
efθ(x,y)

]
a

− log (a) + 1

(5)

În,mDV (fθ, S) = EPnXY [fθ (x, y)]− log
(
EPmX⊗P

m
Y

[
efθ(x,y)

])
(6)
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Theoretical Guarantees

Theorem (Generalization Error Bounds)
Assume, that the hypothesis space F of the critic is uniformly bounded by M , that is

|f(x, y)| ≤ M ∀f ∈ F & ∀ (x, y) ∈ X × Y, M < ∞. For a fixed δ > 0 generalization errors of Î
n,m
TUBA

and Î
n,m
DV

can

be bounded with probability of at least 1 − δ, given by

sup
f∈F

(
ITUBA(f) − În,m

TUBA
(f)
)
≤ 4R̂n (F) +

8

a
e
M R̂m (F) +

4M

n
log

(
4

δ

)
+

8MeM

am
log

(
4

δ

)
+

√√√√√√
(

4M2

n
+

(
eM−e−M

)
2

a2m

)
log

(
2
δ

)
2

(7)

sup
f∈F

(
IDV (f) − În,m

DV
(f)
)
≤ 4R̂n (F) + 8e

2M R̂m (F) +
4M

n
log

(
4

δ

)
+

8Me2M

m
log

(
4

δ

)
+

√√√√√√
(

4M2

n
+

(
e2M−1

)
2

m

)
log

(
2
δ

)
2

(8)

Where, sample set S for Î
n,m
TUBA

and Î
n,m
DV

is assumed to be known, and R̂n (F) and R̂m (F) are empirical Rademacher averages

of the hypothesis space F for different sample sizes.



2021 IIIT-H | 15/22

Theoretical Guarantees

Theorem (Rademacher Complexity)

The empirical Rademacher average of the RKHS F to which ASKL
critic belongs can be bounded as following

R̂n(F) ≤ B

n

√√√√ n∑
i=1

‖φ (xi)‖22 ≤
B√
n

(9)

Where B = sup
f∈F
‖w‖2.
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Training Methodology

The critic, fθ, is optimized to simultaneously maximize empirical
estimate of MI and minimize regularization terms defined below.
The overall training objective is:

argmin
θ
− Î (fθ, S) + λ1‖w‖2 + λ2‖φ (S; θ)‖F (10)

Where, Î can be an empirical estimate of any variational lower
bound of MI, În,mNWJ , În,mMINE , În,mJS or În,mSMILE . And θ is the set of
trainable parameters w, Ω, and Ω′. GAN discriminator objective is
maximized in cases where Î is În,mJS or În,mSMILE . Bias-variance
tradeoff is controlled by tuning hyperparameters, λ1 and λ2. We use
mini-batch stochastic gradient decent to train the estimator.
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Results

(a) Comparison on 20 dimensional correlated Gaussian dataset

(b) Comparision on cubed 20 dimensional correlated Gaussian
dataset

Qualitative comparison between ASKL and baseline critic on four diferent variational
lower bounds of MI, INWJ , IMINE , IJS , and ISMILE . MI estimates on Gaussian
correlated and cubed Gaussian correlated datasets are plotted in (a) and (b),
respectively. MI estimate by the proposed ASKL critic are in blue and the estimates of
baseline critic are depicted in orange.
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Results

(a) Bias, variance and RMSE of ASKL
critic estimates for different batch
sizes.

(b) Bias, variance and RMSE of base-
line critic estimates for different batch
sizes.

Bias, variance, and RMSE values of ASKL critic and baseline critic estimates averaged
over 50 experimental trials are shown in figures (a) and (b), respectively.
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Code

• Please checkout our code at
https://github.com/blackPython/mi estimator

https://github.com/blackPython/mi_estimator
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Thank You
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