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Introduction

D Detected full body target

Missing target

NMS result: under heavily occluded condition, some true positives are
wrongly suppressed.



R2NMS!1!

R2NMS result: use visible region BBoxes to calculate loU and do NMS. Then replace them with
the pairwise full body BBoxes.

[1] X. Huang, Z. Ge, Z. Jie, and O. Yoshie, “Nms by representative region: Towards crowded pedestrian detection by proposal pairing,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10 750-10 759.



DualBox ---- Fundemental architecture

FV-RCNN architecture



DualBox ---- Assighing strategy
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Refine FV-RCNN architecture

Several occlusion patterns are adpoted on each full body proposal to refine the full body
proposals into visible body proposals without complex assigning strategies.
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Different candidate occlusion patterns
are implemented on all the full body

annotations.
9.9% Head
32.8%

Calculate the loU between new boxes Almost full body

and original visible body annotations. 69.8% Left body
24.8% Right body

If loU > 0.5: match
Otherwise: not match

matching rate = # matching boxes / # total boxes



DualBox ---- Occlusion branch and final architecture

DualBox architecture
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Experiments on CrowdHuman!(2!

L4 4

Method MRy, MR AP Recall | AMRy AMR
Baseline 55.94 5042 8495 90.24

Baseline* 54.67 47.64 83.79 87.86

FV-RCNN 5541 46.32 84.62 88.35 +1.32
Refine FV-RCNN | 53.61 46.55 84.74 88.36 +1.06 +1.09
DualBox 53.25 45.65 84.82 88.38 +1.42 +1.99

Experimental results on CrowdHuman

[2] S. Shao, Z. Zhao, B. Li, T. Xiao, G. Yu, X. Zhang, and J. Sun, “Crowdhuman: A benchmark for detecting human in a crowd,” arXiv preprint

arXiv:1805.00123, 2018.



Experiments on CityPersonsl3]

Methods R*NMS  Joint NMS R HO
Baseline (MGAN) 13.8 57.0
Baseline* 13.7 58.3
DualBox 11.5 54.7
DualBox Vv 114 542
DualBox Vv 114 543

Experimental results on CityPersons

[3] S. Zhang, R. Benenson, and B. Schiele, “Citypersons: A diverse dataset for pedestrian detection,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 3213-3221.
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Ablation study

g

Method parallel cascade | MRy MR AP  Recall
Baseline* 54.67 47.64 8379 87.86
FVRCNN Y 880 463 B2 8874
rfine FVRONN |V 347 4639 8459 8855
ownes | V|9 e e

Method MR AP Recall
NMS 4565 84.82 8838
R2NMS 4534 8627 91.33

Ablation study about parallel and cascade

refinement mode on CrowdHuman

Ablation study about post processing
approaches on CrowdHuman

[3] S. Zhang, R. Benenson, and B. Schiele, “Citypersons: A diverse dataset for pedestrian detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 3213-3221.



Visulization results
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Detected results of
baseline Faster R-CNN

Extra detected results of
our DualBox



Thanks for listening



