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Introduction

Motivations:
o difficult to explain for deep neural network’s decisions due to
black-box behavior
@ poor input-to-output inference and interpretability
@ lack of trust between humans and Al systems
Attributions: measure the contribution of the models’ output explained in
terms of the input variables. For e.g. image classification

Original Image Raw Gradients Smooth-Grad IG (zero) IG (noise) Smooth-IG

hyena

Figure 1: Example of saliency maps from different attribution methods
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Preliminaries: Integrated Gradients (IG)

Given a deep neural network represented by a function f for input x:

Integrated Gradients (Sundararajan et al. 2017)

. — (2 x L of(z+ax (x - 2)) "
1Gi(x,2) == (xi — z) /Q_O I d (1)

~lr-myx gy LETEXECD) g

where agff) is the gradient of f in the i*" dimension,

and z is a selected input baseline.

Satisfies two key axioms:
@ implementation invariance: independent on model's structure

@ completeness: attributions add up to the output difference between
input x and baseline z (i.e. ), IGi(x,z) = f(x) — f(2))
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Preliminaries: Integrated Gradients Baselines

Question: How to choose baseline z?

@ zero vector (absence of input features) % i tictical outliers!
e uniform noise!

e.g. image baseline inputs:

. L

Figure 2: Black image Figure 3: Uniform noise

Integrated Gradients with Uniform Noise Baseline

To address the issue of which random noise to be chosen, we take the
average of multiple attributions using N different random noise:

1G poise(x) = Z IG(x, z(”) (3)

v

lpttps: ithub.com/ankurtalv/Integrated-Gradients/
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https://github.com/ankurtaly/Integrated-Gradients/

Preliminaries: SmoothGrad

A technique which compute an attribution map by averaging over multiple
attributions maps of an arbitrary attribution method (denoted as M) with
multiple N’ noised inputs, creating visually sharper attribution maps:

SmoothGrad (Smilkov et al. 2017)

SmoothGrad(x Z M(x +¢€) (4)

where € ~ N(0,0"2)

Observation: Gaussian noise parameter ¢’? needs to be carefully selected
to get best results
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SmoothTaylor Definition

Given a deep neural network represented by a function f for input x:

SmoothTaylor

V4
SmoothTaylori(x) = i —zj)———
oothTaylor;(x) /zes(x z;) B

where z(") ~ S
and z € S is a measurable set of selected roots

Two salient differences from IG:
@ explanation point z; is inner product (x; — z;) is part of the integral

@ integration set S is not a path
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SmoothTaylor Derivation

Any arbitrary differentiable function f can be approximated by Taylor's
theorem with just the first order term:

Taylor's theorem

09 % 1(2)+ 3o ~2) 5. (7

This explains how f(-) in point x is different from the output of the same
model in point z. Notably, it is an explanation for x relative to z.
Question: How to choose z?7

z(r)
f(X) RZ r) +Z r)) aXI )) (8)

r=1

We draw several R roots z{") and take the average.
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SmoothTaylor Roots Generation

Inspired by SmoothGrad, a simple approach is to inject a random variable
€ to input x, where € can be drawn from a Gaussian distribution with
standard deviation ¢ being the noise scaling factor

2N =x+4e 9)

where € ~ N(0,0?)

If the roots in SmoothTaylor are chosen as per Equation (9), then the
discrete version of SmoothTaylor as given in Equation (6) is a special case
of SmoothGrad with M = Vf(x +¢) - e.

@ z must be chosen not to close or too far from x (carefully balanced)
@ SmoothTaylor does not require a selected baseline z vs. IG

@ theorem establishes SmoothTaylor as a theoretical bridge between |G
and SmoothGrad
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Experiment Setup

Goal: Compare empirical performance of SmoothTaylor vs. |G

Scope: Image classification task using ILSVRC2012 ImageNet dataset
(first 1000 images of validation set)

@ 1000 multi-class image classification
@ image pre-processed to be 224 x 224 pixels

Pre-trained models: DenseNet121 and ResNet152
Hyperparameters:

o IG (zero): M =50
@ |G (noise): M =50, and N =1,5,10,20
@ SmoothTaylor: R = 100, 150,200, and o = 3e-1, 5e-1, 7e-1
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Evaluation Metric: Perturbation scores (Sensitivity)

o find ordered sequence O = (r1, ra, ..., 1) the top-L most salient
non-overlapping regions of kernel size k x k

@ apply perturbation function g on most relevant region first (following
O) iteratively L times:

vi</i<L:x)= g(x(lfl), ) (10)

@ at each step /, we consider P different random perturbation samples
and compute the mean score y(:

P
Zf( (= (11)
=1

@ overall measure: area under perturbation curve (AUPC)
Hyperparameters: kK =15, L =30, P =50
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Evaluation Metric: Smoothness (ATV)

@ apply min-max normalization (absolute values > 99th percentile
clipped off) on attribution map to construct saliency map S

@ given § as vector of size h X w to represent every pixel, the ATV of S
is computed as follows:

ATV(S) = —— Z 1Si = Sillp (12)
I,JEN

Here, N defines the set of pixel neighbourhoods (adjacent horizontal
and vertical pixels) and || - || is the £, norm. We use £;-norm

@ construct Gaussian pyramids on S and the ATV at every steps are
called multi-scaled ATVs

@ overall measure: area under multi-scaled ATV curve (AUTVC)
Hyperparameters: downscale factor = 1.5,
and minimum pyramid size = 30 x 30 (total 5 steps)
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Evaluation Metrics Curves

Multi-scaled ATVs Curves
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Figure 4: Evaluation metrics curves; the lower the curve the better.
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Examples: Saliency Maps

Original Image Raw Gradients SmocthGrad IG (zero) IG (noise) SmoothTaylor

shetland sheepdog

axolot!

arter snake

scuba diver

hyena

Figure 5: Examples of some saliency maps (visualized attribution maps)
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Experiment Results

TABLE 1
AREA UNDER THE CURVES RESULTS.
NOTE: LOWER AUPC AND AUTVC IS BETTER.

@ IG with noise baseline with large
N have huge improvements over

Attribution Method Image Classifier Model

DenseNet121 ResNet152 ) . .
1 IG with zero baseline, but still a
baseline N AUPC  AUTVC  AUPC  AUTVC littl d
zero - 23.63 1.52 287 151 ittle worse as compared to
1 2151 1.62 21.05 1.54 SmoothTaylor
N 5 2154 1.52 2099 143
nowse 10 21.46 145 21.02 137 initial choi fsi | h
20 21.43 139 21.02 132 @ Initial choice o Sigma values has
SmoothTaylor DenseNet121 ResNet152 |itt|e effect on performa nce (We
o R AUPC  AUTVC  AUPC  AUTVC . . furth
100 2124 1.28 2083 120 Investigate Turt er)
3e—1 150 2119 124 2079 116
200 2113 1.22 2078 114 o SmoothTaylor performance
Sl 10 220 119 09 110 improves as R increase due to
200 2113 116 2086 107 " hing” eff
100 2139 1.20 2137 1.08 greater “smoothing™ efrect
Te—1 150 2130 115 2132 104
200 2130 L12 2114 1.01
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Sensitivity Analysis

TABLE II
AREA UNDER THE CURVES RESULTS FOR SmoothTaylor WITH EXTREME
HYPERPARAMETER VALUES.
NoOTE: LOWER AUPC AND AUTVC IS BETTER.

SmoothTaylor Image Classifier Model
Hyperparameters DenseNet121 ResNet152

o R AUPC AUTVC AUPC AUTVC
5e—1 10 21.74 1.55 2143 1.43
le—4 100 2345 1.79 23.00 1.55
le—-3 100 23.60 1.53 23.14 1.48
le-2 100 23.90 1.57 23.46 1.23
le—1 100 22.03 143 21.44 1.22

1 100 21.88 117 22.16 1.04

2 100 23.54 1.19 24.48 1.27

experiment with o to be as high
as 2e+0 and as low as le-4,
while fixing R to be 100

when o is too small (< 1e-3) or
big (2e40), AUPC is worse

can be explained from gradient
shattering effects across
multiple linearity zones

optimal window range of is
sample-dependent; support the
claim that sigma needs to be
carefully calibrated
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Adaptive Noising

@ iterative heuristic line search

Algorithm 1: Adaptive Noising
Parameters: Max. iterations i,,,,, learning rate a, Y flnd 0—* SO as to minlmlze for

learning decay ~. max. stop count s,
Input 11 -, root size R, model f -
Ouput Opimal o+ vaue either AUPC or AUTVC
begin

R b ante 0,1 e SmoothTaylor with adaptive
i 1584 0; 0" « o3 AUC" «+ AUC; nOiSing aChieveS beSt

while i < i, do

HAVC, > A0C then Pl b3 performance

0 |o—al;

AUC, ¢ ComputeAUC (z, R, f,0): Hyperparameters: R = ]_50,
else

o lotal: : _ _ _
e‘nd - ‘ /max - 201 smax - 31 o = 011

i AUC, > AUC th _
i S e then v=10.9

| acaxyises+

else
| break TABLE 1II
end AREA UNDER THE CURVES RESULTS WITH ADAPTIVE NOISING.
else NOTE: LOWER AUPC AND AUTVC IS BETTER.
s« 0;
if AUC, < AUC” th e
! < T ‘en‘ . SmoothTaylor Image Classifier Model
| AUC" « AUC: 0* ¢ o Y
d““d Hyperparameters DenseNet121 ResNet152
end
AUC  AUC; i« i+ 1; o R AUPC  AUTVC AUPC AUTVC
en d”"" Adaptive-AUPC 150 19.55 1.14 19.30 1.05

Adaptive-AUTVC 150 22.14 0.99 22.52 0.85
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Conclusion

Paper contributions:

@ present SmoothTaylor as a theoretical concept bridge between I1G and
SmoothGrad

@ emphasize smoothness as a key quality measure for attribution and
introduce multi-scaled ATVs as a new evaluation metric

@ empirically show that SmoothTaylor can produce more
relevance-sensitive and less noisy attribution maps vs. 1G

o further propose adaptive noising as a hyperparameter tuning
technique to optimize SmoothTaylor's performance
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