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Introduction

Motivations:

difficult to explain for deep neural network’s decisions due to
black-box behavior
poor input-to-output inference and interpretability
lack of trust between humans and AI systems

Attributions: measure the contribution of the models’ output explained in
terms of the input variables. For e.g. image classification

Figure 1: Example of saliency maps from different attribution methods
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Preliminaries: Integrated Gradients (IG)

Given a deep neural network represented by a function f for input x :

Integrated Gradients (Sundararajan et al. 2017)

IGi (x , z) := (xi − zi )×
∫ 1

α=0

∂f (z + α× (x − z))

∂xi
dα (1)

≈ (xi − zi )×
1

M

M∑
m=1

∂f (z + m
M × (x − z))

∂xi
(2)

where ∂f (x)
∂xi

is the gradient of f in the i th dimension,
and z is a selected input baseline.

Satisfies two key axioms:

implementation invariance: independent on model’s structure

completeness: attributions add up to the output difference between
input x and baseline z (i.e.

∑
i IGi (x , z) = f (x)− f (z))
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Preliminaries: Integrated Gradients Baselines

Question: How to choose baseline z?

zero vector (absence of input features)
uniform noise1

}
statistical outliers!

e.g. image baseline inputs:

Figure 2: Black image Figure 3: Uniform noise

Integrated Gradients with Uniform Noise Baseline

To address the issue of which random noise to be chosen, we take the
average of multiple attributions using N different random noise:

IGnoise(x) =
1

N

N∑
n=1

IG (x , z(n)) (3)

1https://github.com/ankurtaly/Integrated-Gradients/
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Preliminaries: SmoothGrad

A technique which compute an attribution map by averaging over multiple
attributions maps of an arbitrary attribution method (denoted as M) with
multiple N ′ noised inputs, creating visually sharper attribution maps:

SmoothGrad (Smilkov et al. 2017)

SmoothGrad(x) =
1

N ′

N′∑
n=1

M(x + ε), (4)

where ε ∼ N (0, σ′2)

Observation: Gaussian noise parameter σ′2 needs to be carefully selected
to get best results
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SmoothTaylor Definition

Given a deep neural network represented by a function f for input x :

SmoothTaylor

SmoothTaylori (x) :=

∫
z∈S

(xi − zi )
∂f (z)

∂xi
dz (5)

≈ 1

R

R∑
r=1

(xi − z
(r)
i )

∂f (z(r))

∂xi
(6)

where z(r) ∼ S
and z ∈ S is a measurable set of selected roots

Two salient differences from IG:

explanation point zi is inner product (xi − zi ) is part of the integral

integration set S is not a path
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SmoothTaylor Derivation

Any arbitrary differentiable function f can be approximated by Taylor’s
theorem with just the first order term:

Taylor’s theorem

f (x) ≈ f (z) +
∑
i

(xi − zi )
∂f (z)

∂xi
(7)

This explains how f (·) in point x is different from the output of the same
model in point z . Notably, it is an explanation for x relative to z .
Question: How to choose z?

f (x) ≈ 1

R

R∑
r=1

[
f (z(r)) +

∑
i

(xi − z
(r)
i )

∂f (z(r)))

∂xi

]
(8)

We draw several R roots z(r) and take the average.
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SmoothTaylor Roots Generation

Inspired by SmoothGrad, a simple approach is to inject a random variable
ε to input x , where ε can be drawn from a Gaussian distribution with
standard deviation σ being the noise scaling factor

z(r) = x + ε (9)

where ε ∼ N (0, σ2)

Theorem

If the roots in SmoothTaylor are chosen as per Equation (9), then the
discrete version of SmoothTaylor as given in Equation (6) is a special case
of SmoothGrad with M = ∇f (x + ε) · ε.

z must be chosen not to close or too far from x (carefully balanced)

SmoothTaylor does not require a selected baseline z vs. IG

theorem establishes SmoothTaylor as a theoretical bridge between IG
and SmoothGrad
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Experiment Setup

Goal: Compare empirical performance of SmoothTaylor vs. IG
Scope: Image classification task using ILSVRC2012 ImageNet dataset
(first 1000 images of validation set)

1000 multi-class image classification

image pre-processed to be 224 × 224 pixels

Pre-trained models: DenseNet121 and ResNet152
Hyperparameters:

IG (zero): M = 50

IG (noise): M = 50, and N = 1, 5, 10, 20

SmoothTaylor: R = 100, 150, 200, and σ = 3e-1, 5e-1, 7e-1
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Evaluation Metric: Perturbation scores (Sensitivity)

find ordered sequence O = (r1, r2, ..., rL) the top-L most salient
non-overlapping regions of kernel size k × k

apply perturbation function g on most relevant region first (following
O) iteratively L times:

∀ 1 ≤ l ≤ L : x (l) = g(x (l−1), rl) (10)

at each step l , we consider P different random perturbation samples
and compute the mean score ȳ (l):

ȳ (l) =
1

P

P∑
p=1

f (x (l−1)
(p)

) (11)

overall measure: area under perturbation curve (AUPC)

Hyperparameters: k = 15, L = 30, P = 50

Gary Goh S. W. Understanding IG with SmoothTaylor ICPR 2020 10 / 17



Evaluation Metric: Smoothness (ATV)

apply min-max normalization (absolute values > 99th percentile
clipped off) on attribution map to construct saliency map S
given S as vector of size h×w to represent every pixel, the ATV of S
is computed as follows:

ATV (S) =
1

h × w

∑
i ,j∈N

‖Si − Sj‖p (12)

Here, N defines the set of pixel neighbourhoods (adjacent horizontal
and vertical pixels) and ‖ · ‖ is the `p norm. We use `1-norm

construct Gaussian pyramids on S and the ATV at every steps are
called multi-scaled ATVs

overall measure: area under multi-scaled ATV curve (AUTVC)

Hyperparameters: downscale factor = 1.5,
and minimum pyramid size = 30× 30 (total 5 steps)
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Evaluation Metrics Curves

Figure 4: Evaluation metrics curves; the lower the curve the better.
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Examples: Saliency Maps

Figure 5: Examples of some saliency maps (visualized attribution maps)
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Experiment Results

IG with noise baseline with large
N have huge improvements over
IG with zero baseline, but still a
little worse as compared to
SmoothTaylor

initial choice of sigma values has
little effect on performance (we
investigate further)

SmoothTaylor performance
improves as R increase due to
greater ”smoothing” effect
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Sensitivity Analysis

experiment with σ to be as high
as 2e+0 and as low as 1e-4,
while fixing R to be 100

when σ is too small (< 1e-3) or
big (2e+0), AUPC is worse

can be explained from gradient
shattering effects across
multiple linearity zones

optimal window range of is
sample-dependent; support the
claim that sigma needs to be
carefully calibrated
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Adaptive Noising

iterative heuristic line search

find σ∗ so as to minimize for
either AUPC or AUTVC

SmoothTaylor with adaptive
noising achieves best
performance

Hyperparameters: R = 150,
imax = 20, smax = 3, α = 0.1,
γ = 0.9
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Conclusion

Paper contributions:

present SmoothTaylor as a theoretical concept bridge between IG and
SmoothGrad

emphasize smoothness as a key quality measure for attribution and
introduce multi-scaled ATVs as a new evaluation metric

empirically show that SmoothTaylor can produce more
relevance-sensitive and less noisy attribution maps vs. IG

further propose adaptive noising as a hyperparameter tuning
technique to optimize SmoothTaylor’s performance
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