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 To develop the non-contact based chewing detection system for diet 
monitoring applications

 To obtain and analyze the performance of the proposed approach in term of 
F1-score and accuracy

 To analyze chew count error based on proposed approach using automatic 
chew count label and chewing rate of different food hardness
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METHODOLOGY
Chewing detection system

Test food selection & preparation

Subject & activity
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(a) The proximity sensor: VCNL4040, 
clickboard 9clicks from Mikro-E

(b) The wearable sensor: Arduino, Fs=50Hz
(c) Position of temporalis muscle
(d) Chewing, chewing episode & chewing

count label

(a) A spoonful of test food being weight [9g]
(b) A cylindrical food being weight [9g]
(c) A cylindrical food being measure 

[thickness (±15mm), diameter (±27mm)]
(d) Different food hardness selection: 

Carrot, banana & apple [7]

(d)

1) Subject: 1 with 10 data set
2) Activity: Eating and resting
3) Time: Each set of data takes 240s and 

a total of the 2400s for 10 set of data

Da
ta

Co
lle

ct
io

n
5



METHODOLOGY

Normalization: z-score
BPF with fc1=0.5,

fc2: 2.3-2.5Hz, 5Hz & 6Hz

Time-domain(TD), 
Frequency-domain (FD) & 

TFD (Spectrogram) 

Type: Hanning
Size: 3s

Overlap:50%
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Normalization: z-score
BPF with fc1=0.5, fc2: 

2.4Hz-20Hz

Chew count & chewing 
rate analysisChew detection

Type: Hanning
Size: 240s
Overlap: 0

MATLAB 2020-Classifier 
learner; duration-based

k-fold=10
Accuracy, F1-score

MATLAB 2020
Count: Mean of Error,
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Features
Category

Features (features no. if more than 1) #features

TD
Min., max., max-min, RMS, median, 
variance, standard deviation, skewness, 
kurtosis, interquartile range

10

FD
Mean frequency, power bandwidth, 
median frequency

3

TFD

Amplitude: ranges of frequency between 
1Hz to 3 Hz (6), kurtosis & skewness, 
concentration measure.
PSD: Min. max., mean, median, standard 
deviation, kurtosis, & skewness.
Energy: sum, min, max, mean, energy in 
four bands of frequency (4).
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z − score =
𝑥𝑥 − �̅�𝑥
𝑆𝑆

x = sample data
�̅�𝑥 = mean of the sample
S = standard deviation of the
sample

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹

𝐹𝐹1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑅𝑅𝑃𝑃𝐴𝐴 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹

%𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
)𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃 − 𝐶𝐶𝐸𝐸𝐸𝐸𝐴𝐴(𝑃𝑃

)𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑃𝑃
× 100

%𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
1
M
�
𝑛𝑛=1

𝑀𝑀
)𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑃𝑃) − 𝐶𝐶𝐸𝐸𝐸𝐸𝐴𝐴(𝑃𝑃

)𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑃𝑃
× 100

𝐶𝐶𝑅𝑅 =
)𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 (𝑃𝑃

)𝐶𝐶𝑇𝑇(𝑃𝑃
× 100

(4)

(5)

(6)

(7)

(8)

(1)

TP: true positives, TN : true negatives, 
FP: false positives, FN: false negatives

𝐶𝐶𝐴𝐴𝑃𝑃𝐴𝐴: actual chew count, 𝐶𝐶𝐸𝐸𝑃𝑃𝐴𝐴: chew count estimation,
M: numbers of the chewing episode,
𝐶𝐶𝑇𝑇:chewing episode time, 𝐶𝐶𝑅𝑅 : chewing rate,
n: respective chewing episodes.

(2) (3)

mean

Subject: one with ten set of data taken
Test food: carrot, banana & apple (1 spoonful/9grams)

Activity: Eating and restingDa
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This study only 
considered chewing 

food and resting, the 
signal noise due to the 
motion artifacts could 

be neglected.

The accuracy of the 
2.5Hz does not gives 
comparable accuracy 
with 6Hz as the fc2. 

The accuracies of the 
classifier decrease 

with a constant rate 
and maintain in the 
range of ±97% as the 

fc2 increase.

6Hz gives the 
highest accuracy 

value of 97.4% using 
Quadratic SVM 

classifier. 

2.5Hz gives the 
lowest accuracy of 

92.6% using 
Medium Gaussian 
Support Vector 
Machine (SVM), 
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Classifier performance for a different upper cutoff frequency of bandpass 
filter 

Accuracy F1-score

Fc1 (Hz) Fc2 (Hz) Classifier Accuracy (%) F1-score (%)

0.5 2.5 SVM: Medium 
gaussian 92.6 92.48

0.5 3 Ensemble: 
Boosted tree 93.9 93.79

0.5 3.5 SVM: Medium 
gaussian 94.8 94.71

0.5 4 SVM: Quadratic 95.3 95.25
0.5 4.5 SVM: Quadratic 96.7 96.66
0.5 5 SVM: Quadratic 97.4 97.35

0.5 5.5 SVM: Medium 
gaussian 97.1 97.04

0.5 6 Ensemble: 
Boosted tree 97.6 97.60

0.5 6.5 SVM: Quadratic 97.4 97.36
0.5 7 SVM: Quadratic 97.2 97.21
0.5 8 SVM: Quadratic 96.9 96.97
0.5 9 SVM: Quadratic 97.1 97.16

0.5 10 Ensemble: 
Boosted tree 97.0 97.01

0.5 15 SVM: Quadratic 96.7 96.70

0.5 20 Ensemble: 
Boosted tree 96.8 96.75

RESULTS & DISCUSSION

Table 1. Classifier and its performance for variation of 
the upper cutoff frequency

Fig. 1. Classifier performance for a different upper cutoff frequency of bandpass filter 
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RESULTS & DISCUSSION
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%)
Upper cut-off frequency (Hz)

Carrot

Banana

Apple

Total

Fc2

Chewing episodes
Carrot Banana Apple Total
Mean Mean Mean Mean

CEst %error |%e| CEst %error |%e| CEst %error |%e| CEst %error |%e|
2.3 168.5 0.14 3.91 41.00 -2.16 5.00 49.20 7.70 11.38 258.70 1.46 3.90
2.4 171.30 -1.52 3.16 42.2 -4.54 6.02 52 2.79 6.41 265.50 -1.04 2.69
2.5 172.20 -2.03 2.90 42.90 -6.66 7.25 54.30 -1.11 6.90 269.40 -2.41 3.21
5 177.10 -5.11 14.13 37.50 7.36 9.61 48.70 9.04 18.17 263.30 -0.23 11.77
6 175 -3.92 13.62 37.5 7.56 9.42 51.50 3.56 14.99 264 -0.43 12.11

Table 2. Mean absolute error of chewing count estimation

Fig. 2. The absolute error of chewing count for different upper cut-off frequency 

 For fc2 of 2.3Hz, 2.4Hz, and 2.5Hz, only 
the number of peaks that were in the 
range of chewing label episodes peaks 
value greater than 0 will be counted

 For 5Hz and 6Hz, an additional 
restriction of minimum peak prominence 
of 0.33 and 0.35 was implemented, 
respectively. 

 2.4Hz gives the smallest total absolute 
error of 2.69% compared to other fc2

 The total absolute error obtained is 
comparable or even smaller compared to 
the previous study 8.09±7.16%[25], 
10.4%±7.0%[21], 9.66%[26], 3.83%[27], 
and 12.2%[9] which used method of the 
peak detection algorithm, histogram-
peak detection algorithm, multiple 
regression model, multivariate 
regression model, and maximum 
frequency component (MFC), 
respectively
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RESULTS & DISCUSSION
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Data

Carrot

Banana

Apple

Data
Chewing rate (Signal)

Carrot Banana Apple
CT(s) CR(Hz) CT(s) CR(Hz) CT(s) CR(Hz)

1 74.52 2.05 18.86 1.96 33.72 2.14
2 62.42 2.02 17.98 1.95 18.74 1.87
3 83.44 2.00 14.40 1.74 24.00 2.04
4 86.54 2.00 19.74 2.08 33.70 2.17
5 85.62 2.08 17.18 2.10 20.26 2.17
6 90.62 2.16 24.64 2.11 17.68 1.98
7 85.68 2.08 26.68 2.17 25.36 2.05
8 85.00 2.12 22.08 2.13 27.20 2.06
9 81.80 2.23 18.26 2.08 24.20 2.19
10 83.28 2.16 23.04 2.30 25.76 1.98

Mean 81.89 2.09 20.28 2.06 25.06 2.06
SD 7.98 0.08 3.75 0.15 5.52 0.10

Fig. 3. The chewing rate based on food type for fc2 equal to 2.4Hz

Table 5. The chewing rate for fc2 equal to 2.4Hz

 The chewing rate for all food types was 
in the range of 1.7Hz to 2.3Hz.

 the total chewing count could be used 
to differentiate the food hardness. 

 The chewing rate does not show an 
obvious pattern during chewing food 
with different hardness

Carrot Banana Apple Total
CEst 1713 429 520 2655
CAct 1697 402 536 2635

|%error| 0.94 6.72 2.99 0.76

Sum 1713 429 520 2655
Mean 171.3 -1.52 3.16 42.20 -4.54 6.02 52.00 2.79 6.41 265.5 -1.04 2.69
STD 19.36 4.86 3.88 10.10 6.77 5.33 12.95 9.34 7.09 28.83 3.59 2.45

Chewing episodes
Carrot Banana Apple Total

CEst %e |%e| CEst %e |%e| CEst %e |%e| CEst %e |%e|

Table 3. Percentage of error based on total chewing count for fc2 equal to 2.4Hz

Table 4. The details of the chew count estimation in a dataset for fc2 equal to 2.4Hz
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CHALLENGES
 By focusing on the use of fc2 of 2.4Hz and 6Hz and referring to the 

classification stage results and chewing count estimation results, an 
inference can be made that the chewing frequency is in the range of 
2.5Hz. 

 The 2.5Hz does not give good accuracy in the classification stage as the 
labeling of the chewing signal is based on the self-reporting (using 
pushbutton). 

 There chewing signal and the chewing label does not tally, due to delay in 
pushing the pushbutton or during data collection (obtaining the label data) 
as the self-reporting label approach was used. 

 The unsynchronized data and label would affect when shorter window 
segmentation was used as the chewing data wrongly label.

 This was proven as the chewing classification stage used a shorter window 
of 3s compared to the chewing count estimation of 240s.

10



 The proposed system was able to give high accuracy with 97.6% and F1-score of 
97.6% of chewing detection using fc2 equal to 6Hz in its bandpass filter.

 As fc2 is set to 2.5Hz the accuracy reduced to 92.6%, however, the percentage of 
mean absolute error gives a good value of 3.21% compared to 6Hz with 12.11%. 

 The fc2 was then changed to fc2 of 2.4Hz aiming to find the optimal fc2, and the
results do improve with the percentage of error of 2.69%. 

 While the results of relating the chewing count with the different food hardness 
show a potential and could be further investigated. The results suggest that the 
proposed approach could be used in characterizing the chewing activity. 

 Future work: further modification of labeling methods by either using manual or 
improving the current self-reporting labeling method is required. Besides, more 
data will be collected with different subjects in proving the effectiveness of the 
systems.

CONCLUSION
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