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GAN: a dual view

GANs (Generative Adversarial Networks) are used to generate new data (e.g., images)
from a database of model data.

It takes the form of a pair of networks, the Generator that creates new data and the
Discriminator (Critic) that trains to distringuish the created and original data.
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Fig. 1. Illustration of the dynamics of a GAN. Color code: in green the part that is
active (under training) and in grey the part that is fixed. Left: the discriminator is
active. Right: the generator is active. This is repeated till convergence.
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GANSs: convergence

GANs are computationally intensive (cf. CADL tutorial)
and known to have convergence problems, may exhibit

mode collapse etc.

Theoretical form is an ellipsoid ...

Simple example: (2D GAN ... generate a point in RxR)
X = Generator, y= Discriminator

Discrete form equations:
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GANs convergence: motivation (1/2)

Simple example: discrete continuous
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‘" = Lipschitz function, ‘u’ = probability distribution

QUESTION: what is the continuous equivalent of this
discrete form when learning rate t ->0 ?



GANs convergence: motivation (2/2)

In practice complicated convergence patterns

theoretical empirical

QUESTION: right figure has converged ???



GANSs: convergence technical: metric

space
: , d(l. ¢, )2 son g .
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generator update ... impossible to write for
probability distributions (in this form) but OK to write in
first form that only uses distances ... thus need a metric

space equivalent of V() =z(t) -z
z'(t) = y(t).

Related notion: gradient flow



GANSs: theory

Theorem : the dual (Generator — Discriminator)
evolution equation in a suitably chosen metric spaces
has a meaning as mathematical object.

The object has intuitive properties, in particular it is the
limit of the trajectories for learning rates t-> 0.

It builds on the notion of gradient flow but need to
generalize it because this is NOT a gradient flow.

Related to equilibrium flows (Nonlinear Analysis 165 163-181, 2017)
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GAN convergence: applications (1/2)

Convergence criterion : curve has to stabilize in the limit T-> 0.
E.g.: 2 x more learning steps of % size give the same curve ?

Relevant ‘x’ axis for convergence plots is the cummulative
sum of learning rates.
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GAN convergence: applications (2/2):
mode collapse

Mode collapse (MNIST example)
generated samples are too
similar

Mode collapse: under hypothesis (...) mode collapse is
NOT a limit dynamics (does not satisfy the continuous
equation) thus is unstable. One can exit mode collapse

- changing learning rate
- changing the Generator architecture
- changing the Discriminator architecture




Conclusions and further work

Further applications:
- make automatic use of the convergence information
- Generalize to other settings (VAE, etc.)

Further questions: email
Refs: preprints of the CADL/ICPR Workshop, arXiv:2012.10410
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