Part III: Controllable Image Captioning

Marcella Cornia
marcella.cornia@unimore.it

University of Modena and Reggio Emilia, Italy
Early captioning approaches:
• Global image feature vector

Attention-based approaches:
• Weakly interpretable (through attention)
• Not controllable.
 • We can’t decide which regions get processed
 • No control over the generation process.

Show, Control and Tell
• Controllable via regions
 • A sequence (ordered)
 • A set (unordered)
A step back: what is the right abstraction level for generating sentences?

- So far: word level
- **Ours**: noun chunks

Noun chunk: a noun grouped together with its modifiers.

- Easy to obtain via NLP tools (dependency tree)

Noun chunks can be mapped to image regions

• A sentence is a sequence of noun chunks, eventually associated with an image region

• **Different captions** \Rightarrow **different chunks** \Rightarrow **different regions**

• **Captions differ in terms of:**
 • The set of selected regions
 • The order in which they are described
 • Their mapping to noun chunks (linguistic abilities of the annotator) \Rightarrow Learned!

Language model takes as input **a sequence of regions**

Switches between one region and the next one via a learned chunk-shifting gate
- When it’s done with the generation of chunk, it moves to the next region in the sequence.
• Language model takes as input a sequence of regions
• **Switches between one region and the next one via a learned chunk-shifting gate**
 • When it’s done with the generation of chunk, it moves to the next region in the sequence
• Language model takes as input a sequence of regions
• **Switches between one region and the next one via a learned chunk-shifting gate**
 • When it’s done with the generation of chunk, it moves to the next region in the sequence

• Language model takes as input a sequence of regions

• **Switches between one region and the next one via a learned chunk-shifting gate**

 • When it’s done with the generation of chunk, it moves to the next region in the sequence

• Train on GT words and shifting gate values (obtained via NLP)

\[
L(\theta) = -\sum_{t=1}^{T} \left(\log \left(p(y_t^* | r_{1:t}^*, y_{1:t-1}^*) \right) + g_t^* \log p(g_t = 1 | r_{1:t}^*, y_{1:t-1}^*) + (1 - g_t^*) \log (1 - p(g_t = 1 | r_{1:t}^*, y_{1:t-1}^*)) \right)
\]
• Train on GT words and shifting gate values (obtained via NLP)
• then, finetune using Reinforcement Learning
 • CIDEr wrt GT caption (caption quality)
 • Plus, use the alignment between the predicted and GT chunks as reward (Needleman-Wunsch algorithm)
What if we have an unordered set as input?

- We can learn a network to do the sorting! \(\rightarrow\) SINKHORN NETWORK
 - Approximates a derivable permutation matrix
 - Train on real data, then use the Hungarian to get the true permutation matrix.
For training and evaluation, we collect COCO-Entities → more than 120,000 images

- COCO with noun chunks associated to regions
- Semi-automatically annotated

Controllable Image Captioning: Results

- Controllability via a set of regions
 - 75.5% intersection-over-union with GT chunks!
 - Adds more diversity than methods tailored for diversity 😊

<table>
<thead>
<tr>
<th>Method</th>
<th>B-4</th>
<th>M</th>
<th>R</th>
<th>C</th>
<th>S</th>
<th>IoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC-2K† [36]</td>
<td>12.5</td>
<td>18.5</td>
<td>39.6</td>
<td>116.5</td>
<td>26.6</td>
<td>61.0</td>
</tr>
<tr>
<td>Up-Down† [3]</td>
<td>14.4</td>
<td>20.0</td>
<td>42.2</td>
<td>132.8</td>
<td>29.7</td>
<td>63.2</td>
</tr>
<tr>
<td>Neural Baby Talk† [24]</td>
<td>13.1</td>
<td>19.2</td>
<td>40.5</td>
<td>119.1</td>
<td>29.2</td>
<td>62.6</td>
</tr>
<tr>
<td>Controllable LSTM</td>
<td>12.9</td>
<td>19.3</td>
<td>41.3</td>
<td>123.4</td>
<td>28.7</td>
<td>64.2</td>
</tr>
<tr>
<td>Controllable Up-Down</td>
<td>18.1</td>
<td>23.6</td>
<td>48.4</td>
<td>170.5</td>
<td>40.4</td>
<td>71.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Samples</th>
<th>B-4</th>
<th>M</th>
<th>R</th>
<th>C</th>
<th>S</th>
<th>IoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG-CVAE [44]</td>
<td>20</td>
<td>47.1</td>
<td>30.9</td>
<td>63.8</td>
<td>130.8</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>POS [8]</td>
<td>20</td>
<td>44.9</td>
<td>36.5</td>
<td>67.8</td>
<td>146.8</td>
<td>27.7</td>
<td></td>
</tr>
<tr>
<td>Ours</td>
<td>20</td>
<td>44.8</td>
<td>36.6</td>
<td>68.9</td>
<td>156.5</td>
<td>30.9</td>
<td></td>
</tr>
</tbody>
</table>

Results when controlling with a sequence of regions

A man sitting at a desk with a computer and a man holding a camera.

A man sitting at a desk with a computer.

Controllability via a Sequence of Regions

Results when controlling with a sequence of regions

A giraffe standing in front of a zebra in a field.

A zebra standing next to a giraffe in a field.

Results when controlling with a set of regions

A dog holding a frisbee in its mouth.

A dog standing in the grass with a frisbee in its mouth.
Controllability via a Set of Regions

Results when controlling with a set of regions

A man in a black jacket skiing down a hill.

A man on skis down a snow covered slope.

↓ Get your hands dirty

Dataset, code, pre-trained models are available at

- https://github.com/aimagelab/show-control-and-tell

→ based on speaksee