Muneki Yasuda
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Multi-Layered Discriminative Restricted Boltzmann Machine with Untrained Probabilistic Layer
Auto-TLDR; MDRBM: A Probabilistic Four-layered Neural Network for Extreme Learning Machine
An extreme learning machine (ELM) is a three-layered feed-forward neural network having untrained parameters, which are randomly determined before training. Inspired by the idea of ELM, a probabilistic untrained layer called a probabilistic-ELM (PELM) layer is proposed, and it is combined with a discriminative restricted Boltzmann machine (DRBM), which is a probabilistic three-layered neural network for solving classification problems. The proposed model is obtained by stacking DRBM on the PELM layer. The resultant model (i.e., multi-layered DRBM (MDRBM)) forms a probabilistic four-layered neural network. In MDRBM, the parameters in the PELM layer can be determined using Gaussian-Bernoulli restricted Boltzmann machine. Owing to the PELM layer, MDRBM obtains a strong immunity against noise in inputs, which is one of the most important advantages of MDRBM. Numerical experiments using some benchmark datasets, MNIST, Fashion-MNIST, Urban Land Cover, and CIFAR-10, demonstrate that MDRBM is superior to other existing models, particularly, in terms of the noise-robustness property (or, in other words, the generalization property).