Grzegorz Muszynski

Papers from this author

Atmospheric Blocking Pattern Recognition in Global Climate Model Simulation Data

Grzegorz Muszynski, Prabhat Mr, Jan Balewski, Karthik Kashinath, Michael Wehner, Vitaliy Kurlin

Responsive image

Auto-TLDR; A Hierarchical Pattern Recognition of Atmospheric Blocking Events in Global Climate Model Simulation Data

Slides Poster Similar

In this paper, we address a problem of atmospheric blocking pattern recognition in global climate model simulation data. Understanding blocking events is a crucial problem to society and natural infrastructure, as they often lead to weather extremes, such as heat waves, heavy precipitation, and the unusually poor air condition. Moreover, it is very challenging to detect these events as there is no physics-based model of blocking dynamic development that could account for their spatiotemporal characteristics. Here, we propose a new two- stage hierarchical pattern recognition method for detection and localization of atmospheric blocking events in different regions over the globe. For both the detection stage and localisation stage, we train five different architectures of a CNN-based classifier and regressor. The results show the general pattern of the atmospheric blocking detection performance increasing significantly for the deep CNN architectures. In contrast, we see the estimation error of event location decreasing significantly in the localisation problem for the shallow CNN architectures. We demonstrate that CNN architectures tend to achieve the highest accuracy for blocking event detection and the lowest estimation error of event localization in regions of the Northern Hemisphere than in regions of the Southern Hemisphere.