Tianyu Guo
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
EDD-Net: An Efficient Defect Detection Network
Tianyu Guo, Linlin Zhang, Runwei Ding, Ge Yang
Auto-TLDR; EfficientNet: Efficient Network for Mobile Phone Surface defect Detection
Abstract Slides Poster Similar
As the most commonly used communication tool, the mobile phone has become an indispensable part of our daily life. The surface of the mobile phone as the main window of human-phone interaction directly affects the user experience. It is necessary to detect surface defects on the production line in order to ensure the high quality of the mobile phone. However, the existing mobile phone surface defect detection is mainly done manually, and currently there are few automatic defect detection methods to replace human eyes. How to quickly and accurately detect the surface defects of mobile phone is an urgent problem to be solved. Hence, an efficient defect detection network (EDD-Net) is proposed. Firstly, EfficientNet is used as the backbone network. Then, according to the small-scale of mobile phone surface defects, a feature pyramid module named GCSA-BiFPN is proposed to obtain more discriminative features. Finally, the box/class prediction network is used to achieve effective defect detection. We also build a mobile phone surface oil stain defect (MPSOSD) dataset to alleviate the lack of dataset in this field. The performance on the relevant datasets shows that the network we proposed is effective and has practical significance for industrial production.