Ioannis Patras

Papers from this author

Cycle-Consistent Adversarial Networks and Fast Adaptive Bi-Dimensional Empirical Mode Decomposition for Style Transfer

Elissavet Batziou, Petros Alvanitopoulos, Konstantinos Ioannidis, Ioannis Patras, Stefanos Vrochidis, Ioannis Kompatsiaris

Responsive image

Auto-TLDR; FABEMD: Fast and Adaptive Bidimensional Empirical Mode Decomposition for Style Transfer on Images

Slides Poster Similar

Recently, research endeavors have shown the potentiality of Cycle-Consistent Adversarial Networks (CycleGAN) in style transfer. In Cycle-Consistent Adversarial Networks, the consistency loss is introduced to measure the difference between the original images and the reconstructed in both directions, forward and backward. In this work, the combination of Cycle-Consistent Adversarial Networks with Fast and Adaptive Bidimensional Empirical Mode Decomposition (FABEMD) is proposed to perform style transfer on images. In the proposed approach the cycle-consistency loss is modified to include the differences between the extracted Intrinsic Mode Functions (BIMFs) images. Instead of an estimation of pixel-to-pixel difference between the produced and input images, the FABEMD is applied and the extracted BIMFs are involved in the computation of the total cycle loss. This method enriches the computation of the total loss in a content-to-content and style-to-style comparison by connecting the spatial information to the frequency components. The experimental results reveal that the proposed method is efficient and produces qualitative results comparable to state-of-the-art methods.