Jia He

Papers from this author

Graph Convolutional Neural Networks for Power Line Outage Identification

Jia He, Maggie Cheng

Responsive image

Auto-TLDR; Graph Convolutional Networks for Power Line Outage Identification

Poster Similar

In this paper, we consider the power line outage identification problem as a graph signal classification problem, where the signal at each vertex is given as a time series. We propose graph convolutional networks (GCNs) for the task of classifying signals supported on graphs. An important element of the GCN design is filter design. We consider filtering signals in either the vertex (spatial) domain, or the frequency (spectral) domain. Two basic architectures are proposed. In the spatial GCN architecture, the GCN uses a graph shift operator as the basic building block to incorporate the underlying graph structure into the convolution layer. The spatial filter directly utilizes the graph connectivity information. It defines the filter to be a polynomial in the graph shift operator to obtain the convolved features that aggregate neighborhood information of each node. In the spectral GCN architecture, a frequency filter is used instead. A graph Fourier transform operator first transforms the raw graph signal from the vertex domain to the frequency domain, and then a filter is defined using the graph's spectral parameters. The spectral GCN then uses the output from the graph Fourier transform to compute the convolved features. There are additional challenges to classify the time-evolving graph signal as the signal value at each vertex changes over time. The GCNs are designed to recognize different spatiotemporal patterns from high-dimensional data defined on a graph. The application of the proposed methods to power line outage identification shows that these GCN architectures can successfully classify abnormal signal patterns and identify the outage location.