Xi Lu
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Cut and Compare: End-To-End Offline Signature Verification Network
Auto-TLDR; An End-to-End Cut-and-Compare Network for Offline Signature Verification
Abstract Slides Poster Similar
Offline signature verification, to determine whether a handwritten signature image is genuine or forged for a claimed identity, is needed in many applications. How to extract salient features and how to calculate similarity scores are the major issues. In this paper, we propose a novel end-to-end cut-and-compare network for offline signature verification. Based on the Spatial Transformer Network (STN), discriminative regions are segmented from a pair of input signature images and are compared attentively with help of Attentive Recurrent Comparator (ARC). An adaptive distance fusion module is proposed to fuse the distances of these regions. To address the intrapersonal variability problem, we design a smoothed double-margin loss to train the network. The proposed network achieves state-of-the-art performance on CEDAR, GPDS Synthetic, BHSig-H and BHSig-B datasets of different languages. Furthermore, our network shows strong generalization ability on cross-language test.