Ermanno Cordelli
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Categorizing the Feature Space for Two-Class Imbalance Learning
Rosa Sicilia, Ermanno Cordelli, Paolo Soda
Auto-TLDR; Efficient Ensemble of Classifiers for Minority Class Inference
Abstract Slides Poster Similar
Class imbalance limits the performance of most learning algorithms, resulting in a low recognition rate for samples belonging to the minority class. Although there are different strategies to address this problem, methods that generate ensemble of classifiers have proven to be effective in several applications. This paper presents a new strategy to construct the training set of each classifier in the ensemble by exploiting information in the feature space that can give rise to unreliable classifications, which are determined by a novel algorithm here introduced. The performance of our proposal is compared against multiple standard ensemble approaches on 25 publicly available datasets, showing promising results.