Thomas Zielke
Paper download is intended for registered attendees only, and is
subjected to the IEEE Copyright Policy. Any other use is strongly forbidden.
Papers from this author
Dimensionality Reduction for Data Visualization and Linear Classification, and the Trade-Off between Robustness and Classification Accuracy
Martin Becker, Jens Lippel, Thomas Zielke
Auto-TLDR; Robustness Assessment of Deep Autoencoder for Data Visualization using Scatter Plots
Abstract Slides Poster Similar
This paper has three intertwined goals. The first is to introduce a new similarity measure for scatter plots. It uses Delaunay triangulations to compare two scatter plots regarding their relative positioning of clusters. The second is to apply this measure for the robustness assessment of a recent deep neural network (DNN) approach to dimensionality reduction (DR) for data visualization. It uses a nonlinear generalization of Fisher's linear discriminant analysis (LDA) as the encoder network of a deep autoencoder (DAE). The DAE's decoder network acts as a regularizer. The third goal is to look at different variants of the DNN: ones that promise robustness and ones that promise high classification accuracies. This is to study the trade-off between these two objectives -- our results support the recent claim that robustness may be at odds with accuracy; however, results that are balanced regarding both objectives are achievable. We see a restricted Boltzmann machine (RBM) pretraining and the DAE based regularization as important building blocks for achieving balanced results. As a means of assessing the robustness of DR methods, we propose a measure that is based on our similarity measure for scatter plots. The robustness measure comes with a superimposition view of Delaunay triangulations, which allows a fast comparison of results from multiple DR methods.